

Human Cardiovascular System Lecture (12) Cardiac Conductivity and Contactility

- The cardiovascular is a **closed transport system** inside which blood circulates <u>in one direction</u> by <u>the action of the valves present in heart and most of veins</u>.
- The **cardiovascular** system consists of the heart and blood vessels.
- The heart is muscular organ. Each side is formed of two chambers (atrium & ventricle).
- The atria act mainly as blood reservoirs and ventricles act as a pump.
- The musculature of ventricles is thicker than that of atria.

tricuspid valve	mitral valve (bicuspid).
Separate the right atrium from the right ventricle	Separate the left atrium from the left ventricle
pulmonary valve	aortic valve
Separate the pulmonary artery from right ventricle	Separate the aorta from the left ventricle
Right atrium	Left atrium
receives and deoxygenated blood from the venous	The left atrium receives oxygenated blood from the
system then sends down to the right ventricle	lungs.
system then sends down to the right ventricle Right ventricle	lungs. Left Ventricle
	-
Right ventricle	Left Ventricle

Faculty of Pharmacy-Al-Maagal University

<u>The cardiac muscle consists of:</u>	
myocardial contractile cells	myocardial conducting cells
(99%, similar to skeletal muscle but with	(1%) that is responsible for initiation (SA node) and
intercalated discs, gap junctions between its	propagation of action potential to the contractile
<u>fibers</u>)	fibers (AV node, Bundle of His, Right and left
	bundle branches and Purkinje fibers).
can't initiate their action potential	contain more sarcoplasm and very little myofibrils.

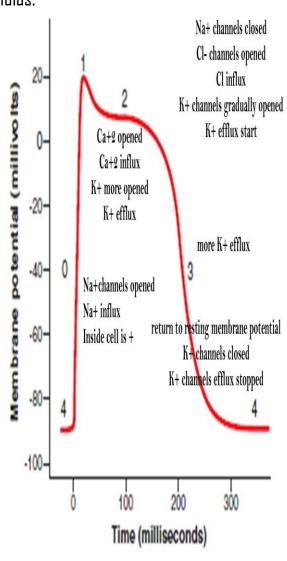
Physiological properties of the cardiac muscle:

- 1. Excitability.
- 3. Contractility.

1. Excitability

It is the ability of cardiac muscle to respond to an adequate stimulus.

<u>Phase D</u> (Rapid depolarization up to +20 mv): This phase is due to the opening of the fast Na+ channels causing a rapid increase in the membrane conductance to Na+.


<u>Phase 1 (partial repolarization)</u>: Phase 1 of the myocyte action potential occurs with the inactivation of the fast Na+ channels with influx of Cl^- and gradually increasing K^+ efflux.

Phase 2 (plateau phase): This "plateau" phase of the cardiac action potential is due to prolonged increased permeability of cell membrane to Ca^{2+} caused by opening of L-type slow Ca^{2+} channels. It is sustained by a balance between inward movement of Ca^{2+} and outward movement of K^+ . The plateau phase increases the action potential time (5-15 times as skeletal muscle) \rightarrow long absolute refractory period.

Phase 3 (Rapid repolarization): Due to delayed increased permeability of cell membrane to $K^+ \rightarrow more K^+$ efflux.

Phase 4 (RMP): It is the resting membrane potential (RMP), is about -90 mV.

Rhythmicity. Conductivity.

Faculty of Pharmacy-Al-Maaqal University

المعلى الأعلى	and the state of t	University Pharmacy	باهمان المعمل الأجليم Almaagal University
+20 -40 -80 -80 -80 -80 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -10000 -1000	Action potential refractory pe	ariod 200 25	Relative refractory period
Absolute refractory period	Relative refract	tory period	Supernormal phase
 ✓ The period during which the cardiac muscle cannot respond to any stimulus whatever strong ✓ Occupying the whole systole and early part of diastole (to allow heart filling). Phase 0 + Phase 1 + Phase 2 Significance of long absolute refractory period (ARP): 1. Prevention of tetanic contraction of the heart as it is fatel (star heart sump) 	 ✓ The period du cardiac muscle n stimulus than nor a response called (premature bea ✓ Occupies the repolarization ph ✓ Phase 3 Extrasystole: Ab that are produce discharged from excitable ectopic at her produce at her produc	eeds stronger rmal to produce d extrasystole it s). end of ase normal systole d by impulses a hyper- focus (a focus	 ✓ the excitability is more than normal ✓ cardiac muscle can respond to sub-threshold stimulus ✓ begins at the end of relative refractory period ✓ may lead to arrhythmia up to ventricular fibrillation (fatal).
is fatal (stop heart pump). 2. Provide rest period for the cardiac muscle so prevent fatigue.	other than norma Such foci may de as a result of exc or pathologically myocardial ische	velop normally cessive smoking due to	
The systole (heart contr			cole (heart relaxation)
reaches its maximum at the end o	of plateau phase	starts with rapid at about the mide	repolarization which is completed dle of diastole

Faculty of Pharmacy-Al-Maaqal University

CONDUCTIVITY

Ability to conduct the excitation wave through the heart. Human heart has a specialized conductive system, through which impulses from SA node are transmitted to all other parts of the heart.

CONDUCTIVE SYSTEM IN HUMAN HEART:

Conductive system of the heart is formed by the <u>modified cardiac muscle fibers</u>. These fibers are the specialized cells, which conduct the impulses rapidly from SA node to the ventricles.

Components of Conductive System in Human Heart

- 1. AV node.
- 2. Bundle of His.
- 3. Right and left bundle branches.

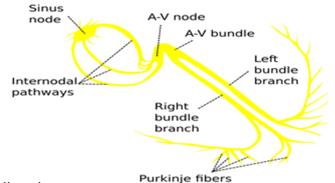
4. Purkinje fibers to each ventricular fiber to contract all at the same time.

Velocity of conduction:

- In A-V node = 0.2 meter/second (delayed conduction).
- In bundle branches and Purkinje fibers = 4 meter/second (rapid conduction).
- In AV bundle, ventricular and atrial muscles = one meter/second.

Thus, the velocity of impulses is maximum in Purkinje fibers (more gap junctions) and minimum at AV node (AV nodal delay, few gap junctions).

\checkmark Significance of AV nodal delay:


1- Give enough time for blood to pass from atria to ventricles. If conduction at AV node is rapid, atria and ventricles contract at the same time.

2- Protects the ventricles against the pathologically high atrial rhythms as atrial flutter and atrial fibrillation.

Rhythmicity

It is the ability of the cardiac muscle to beat (contract and relax) regularly.

Rhythmicity is myogenic (started from the cardiac muscle).

Faculty of Pharmacy-Al-Maaqal University

Rhythmicity of different parts of the heart:

The sino-atrial (S-A) node rhythm (Sinus rhythm)	The atrio-ventricular (AV) node rhythm	Purkinje fibers rhythm
100-110 discharges per minute	60 discharges per minute	25-40 discharge/minute
and it acts as the pacemaker of the heart	secondary pacemaker and acts only if the S-A node is damaged	tertiary pacemaker
	It is the only electrical pathway from atrium to ventricle (main function of AV node).	acts only if the impulse conduction via A-V node is completely blocked and damage AV bundle

□ Factors affecting rhythmicity:

Nervous factors	Physical factors	Chemical factors
a Sympathetic→↑ rhythmicity of the whole heart	∕⊉Moderate warming →↑ rhythmicity	∕a Adrenaline, thyroxine→↑ rhythmicity
ParaSympathetic→↓ rhythmicity of the whole heart	rhythmicity ❷Excessive cooling →Stop	 Acetylcholine →↓ rhythmicity Moderate acidity →↓ rhythmicity Moderate alkalinity →↑ rhythmicity
	secondary to changes in the metabolic activity of the pacemaker cells in the SAN	

> Arrhythmias:

These are abnormalities in the number or regularity of heart beating due to:

- 1. <u>Disturbances in impulse formation</u>: Due to either: -
- Alteration of SA node activity (sinus tachycardia or bradycardia).

Faculty of Pharmacy-Al-Maaqal University

• Presence of ectopic foci:

Atrial extrasystole	Ventricular extrasystole	Paroxysmal atrial	Paroxysmal ventricular
		tachycardia (Attack)	tachycardia (Attack)
🖄 Place: Atrium	🖄 Place: Ventricle	🖄 Place: Atrium	🖄 Place: Ventricle
🖄 Cause: Ectopic focus	🖄 Cause: Ectopic focus	🖄 Cause: Ectopic focus	🖄 Cause: Ectopic focus
🖄 Beats: only one more	🖄 Beats: only one more	🖄 Beats: 150-220/min	🖄 Beats: 150-220/min
🖄 SA node: work	🖄 SA node: work	🖄 SA node: Suppressed	🖄 SA node: work
🖄 Pcaemaker: SA node	🖄 Pcaemaker SA node	🖄 Pcaemaker Ectopic	🖄 Pcaemaker: SA in
		focus	atrium. focus in ventricle
Atrial flutter	Atrial fibrillation	Ventricular fibrillation	
🖄 Place: Atrium	🖄 Place: Atrium	🖄 Place: ventricle	
🖄 Cause: Ectopic focus	🖄 Cause: Ectopic focus	🖄 Cause: multiple	
🖄 Beats: 250-350/min	🖄 Beats: 350-500/min	ectopic foci	
🖄 SA node: work	🖄 SA node: work	🖄 Beats: irregular	
🖄 Pcaemaker: SA node	🖄 Pcaemaker SA node	🖄 SA node: work	
🖄 AV node: conduct 180-	🖄 AV node: conduct 180-	No pump	
230 beat/min	230 beat/min	Death	

2. <u>Disturbances in impulse conduction:</u> heart block.

Heart block: It means failure of conduction of impulses from S-A node down to the ventricles. It

CONTRACTILITY

Ability of cardiac muscle to contract and push blood into the circulation.

\succ Myocardial excitation contraction coupling:

- As in skeletal muscle, the depolarization wave causes release of Ca⁺² ions into the muscle sarcoplasm from the sarcoplasmic reticulum. This is called activator Ca⁺².
- Relaxation of cardiac muscle occurs as a result of release of actin-myosin combination by decreasing the intracellular Ca⁺² to its pre-contraction level by: active reuptake of Ca⁺² to sarcoplasmic reticulum and active pumping of excess Ca⁺² outside by anti-port Na⁺-Ca⁺² exchanger carrier.

Myocardial contraction	Myocardial relaxation
depolarization wave \rightarrow Ca ⁺² ions release from the	Ca ⁺² ions reuptake to sarcoplasmic reticulum /
	active pumping of excess Ca^{+2} outside by anti-port Na ⁺ - Ca ⁺² exchanger carrier $\rightarrow \downarrow$ intracellular Ca ⁺²
	ions \rightarrow Relaxation

Faculty of Pharmacy-Al-Maaqal University

> Properties of cardiac muscle contraction:

All or none rule	Staircase phenomenon	Frank Starling's law
∕acardiac muscle either contracts		2 ↑The initial length of cardiac
maximally or does not contract at	$ ightarrow$ Gradual \uparrow increase in muscle	muscle fibers during diastole $\rightarrow \uparrow$
all	contraction	Contraction of cardiac muscle
🖄 cardiac contraction occurs		(Directly proportional within limit)
remain constant		🖄 Overstretching of the muscle
▲No contraction at all occurs on		fibers causes marked decrease in
using a sub-threshold stimulus		contractility
_		The heart is dilated but the
		contraction is weak

> Factors affecting contractility

Nervous factors	Physical factors	Chemical factors
 Sympathetic→↑intracellular Ca²⁺→↑ contractility of the whole heart ParaSympathetic→↓intracellular Ca²⁺→↓ contractility of the whole heart (Atrial muscle only) 	 Mild cooling →↓ intracellular Ca²+& ATP formation→↓ contractility Excessive cooling →↓ ATP formation→Stop contractility Excessive heat →↓ ATP formation→ Stop contractility 	 Adrenaline, thyroxine, digitalis→↑ contractility Acetylcholine →↓ contractility Moderate acidity →↓ contractility Moderate alkalinity →↑ contractility Excessive Acidity or Alkalinity → Stop rhythmicity ↑K⁺→↓lowering cell-resting action potential → preventing repolarization→↓contractility. ↑Ca⁺²→ prolonging systole on the expense of the diastole→ preventing repolarization→ ↑contractility.

Faculty of Pharmacy-Al-Maaqal University