

Lecture 5. Bacterial genetics

Learning objectives

Upon completion of this lecture, student should be able to:

- 1. Describe the structure of DNA and RNA.
- 2. Discuss structures and functions of the plasmids.
- 3. Describe mutations.
- 4. Discuss various methods of gene transfer.

Genetics

It is the study of **heredity and variation** to understand the cause of **resemblance** and **differences** between parents and their progeny.

Structure of DNA

The DNA molecule is composed of **two strands** of **complementary nucleotides** wound together in the form of a **double helix**.

Each DNA strand has a:

- 1. Backbone of **deoxyribose** (sugar)
- 2. Phosphate group residues
- 3. Four nitrogenous bases:
 - Two **purines** (adenine and guanine)
 - Two **pyrimidines** (thymine and cytosine).

A molecule of DNA contains **as many units** of **adenine** as **thymine** and of **guanine** as **cytosine**.

The ratio of adenine and thymine to guanine and cytosine is constant for each species, but varies widely between bacterial species.

Structure of RNA

The structure of RNA is similar to that of DNA except:

- Its single stranded
- The sugar is **D-ribose**
- Contains **uracil** instead of **thymine**

On the basis of **structure** and **function**, the RNA can be differentiated into:

- Messenger RNA (**mRNA**)
- Ribosomal RNA (**rRNA**)
- Transfer RNA (**tRNA**)

Gene

It is a segment of DNA that carries codons specifying for a particular polypeptide.

A DNA molecule consists of a **large number of genes**, each of which contains hundreds of thousands of **nucleotides**.

The length of DNA is usually expressed as kilobases

- 1 kbp = 1000 base pairs (bp)

Bacterial DNA measures usually 4000 kbp

Human genome measures about 3 million kbp

Mutations

Mutation is a **random**, **undirected**, and **heritable variation** seen in DNA of the cell.

It is caused by a change in base sequence of DNA due to **addition**, **deletion**, or **substitution** of **one or more bases** in the nucleotide sequence of DNA.

Mutation results in **insertion** of a **different amino acid into a protein**, resulting in the appearance of an **altered phenotype**.

Causative agents of mutations

Mutation can be caused by:

- Viruses (Bacterial viruses)
- **Radiation** (X-rays and ultraviolet light)
- **Chemicals** (nitrous acid, alkylating agents, etc)

Effects of mutations

- 1. Mutation alter drug susceptibility, antigenic structure, and virulence of mutant bacteria.
- 2. Alter susceptibility of bacteria to bacteriophages.
- 3. Alter bacterial colony morphology and pigment productions.
- 4. Affect the ability of bacteria to produce capsule or flagella.

Extra chromosomal DNA substances

- 1. Plasmids
 - Extra chromosomal DNA substances varying from less than 5 to more than several 100 kbp
- 2. Transposons
 - A type of mobile DNA of 2000–20,000 bp

Functions of plasmids

- 1. Resistance to one or several antibiotics
- 2. Production of toxins
- 3. Synthesis of cell surface structures required for adherence or colonization

Transfer of DNA between bacterial cells

Methods of transfer	Mechanism
Transformation	Recipient cell uptake of free DNA released into the environment
Transduction	Transfer of a portion of DNA from one bacterium to another by bacteriophage
Conjugation	Transfer of DNA from one living bacterium to another through the sex pilus