CHAPTER 1
PRELIMINARIES

1.1 Real Numbers and the Real Line

Calculus is based on the real number system. Real numbers are numbers that can be
expressed as decimals.
We distinguish three special subsets of real numbers:

1. The natural numbers, namely 1, 2, 3, 4,...

2. The integers, namely 0, £1, £2, +3,...

3. The rational numbers, which are ratios of integers. These numbers can be
expressed in the form of a function m/n, where m and n are integers and »n#0.
Examples are:

(Recall that division by is always ruled out, so expressions like %and %are
undefined.)

The real numbers can be represented geometrically as points on a number line
called the real line, as in Figure 1.1.
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Figure 1.1

1.1.1 Intervals

Certain sets (or a subset) of real numbers, called intervals, occur frequently in
calculus and correspond geometrically to line segments. For example, if a < b, the
open interval from to consists of all numbers between a and b is denoted by the
symbol (a, b). Using set-builder notation, we can write:



(a,b)={xla<x<b}
(which is read “(a, b) is the set of x such that x is an integer and a <x <b.)

Notice that the endpoints of the interval -namely, a and b- are excluded. This is
indicated by the round brackets and by the open dots in Table 1.1. The closed
interval from a to b is the set

[a, b] ={x|a<x<Db}

Here the endpoints of the interval are included. This is indicated by the square
brackets [ ] and by the solid dots in table 1.1. It is also possible to include only one
endpoint in an interval, as shown in Table 1.1.

Table 1.1
Notation Set description Tvpe Picture
Finite: (a, b) {x|a < x < b} Open -
a b
[a, b] [x|a = x = b} Closed
a [
[a, b) [x|la =x < b} Half-open
a b
(a, b] {x|la < x = b} Half-open
a k
Infinite: {a, o) {x|x = a} Open :
a
[a, oo) {x|x = a} Closed
a
(—o0.b) {x|x < b} Open - -
(—oa, b] {x|x = b} Closed - :
(—o0, c0) R (set of all real
numbers) Both open -
and closed

1.1.2 Inequalities

The process of finding the interval or intervals of numbers that satisfy an inequality
in x is called solving the inequality.

The following useful rules can be derived from them, where the symbol => means
“implies.”



Rules for Inequalities
If @, b, and c are real numbers, then:

. a<b=a+c<bh+c

2. a<b=a—-—c<b-—c

3. a<bandc =0 = ac < bc

4. a<bandec < 0 = bc < ac
Special case:a < b = —b < —a

5. a>0=1>0

1 _
b

o=

6. If @ and b are both positive or both negative, thena < b =

Example 1: Solve the following inequalities and show their solution sets on the
real line.

6

< _X = Ix + =
(a) 2x — 1 <= x + 3 (b) 3 - 2x + 1 {c]x_l 5
Solution:
(a) 2x—1<x+3
2x < x + 4 Add 1 to both sides
x < 4 Subtract x from both sides

The solution set is the open interval (-oo, 4) (Figure 1.1a).

(b) —% < 2x + 1

—x < 6x + 3 Multiply both sides by 3.
0<7Tx +3 Add x to both sides.

—3 < Tx Subtract 3 from both sides.
3 X Divide by 7

— = = divide by 7
? o

The solution set is the open interval (-3/7, «) (Figure 1.1b).



The inequality 6/(x — 1) > 5 can hold only if x > 7 because otherwise 6/(x — 1) is
undefined or negative. Therefore, (x — 1) is positive and the inequality will be
preserved if we multiply both sides by (x — 1) and we have

6

x—1_ )
6=5x—35 Multiply both sides by (x )
11 = 5x Add 5 to both sides.
% —_— orx =1L

The solution set is the half-open interval (1, 11/5] (Figure 1.1c)
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1.1.3 Absolute Value
The absolute value of a number x, denoted by | x |, is the distance from x to 0 on
the real number line. Distances are always positive or 0, so we have

|x|>0 for every number X

Or it can be defined by the formula:



Example 2:

131=3,10[=0,[-5]=-(-5)=51-]all=|a]

Geometrically, the absolute value of x is the distance from x to 0 on the real number
line. Since distances are always positive or 0, we see that | x | > 0 for every real
number x, and | x | =0 if and only if x =0. Also,

| x —y | = the distance between x and y

on the real line (Figure 1.2).
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Figure 1.3
The absolute value has the following properties:
Absolute Value Properties
1. |—a|=]|aq] A number and its additive inverse or negative have
the same absolute value.
2. |ab| = |al|b| The absolute value of a product is the product of
the absolute values.
3 al _ i| The absolute value of a quotient is the quotient
o b| || of the absolute values.
4. |a + b| = |a| + |b The triangle inequality. The absolute value of the
sum of two numbers is less than or equal to the
sum of their absolute values.




Example 3:

=3 +5|=|2|=2<|-3|+]|5]=
13 + 5| =8| =|3]| +|5]
-3 —5|=|-8/=8=|-3|+|-5

The following statements are all consequences of the definition of absolute value
and are often helpful when solving equations or inequalities involving absolute
values:

Absolute Values and Intervals
If a 1s any positive number, then

5. [x|=a ifand only if x = *a

6. x| <a ifandonlyif —a <x < a

7. |x|>a ifand onlyif x > a or x < —a
8. |x|=a ifandonlyif —a=x=a

9. x|=a ifandonlyif x =a or x = —a

The inequality | x | < a says that the distance from x to O is less than the positive
number a. This means that x must lie between — a and a, as we can see from Figure
1.4,

| |
| a a I

Figure 1.4
Example 4: Solve the equation | 2x -3 |=7
Solution:
By Property 5, 2x — 3 = +7, so there are two possibilities:
2x — 3 =17 2x—3=-7 Equivalent equations without absolute values
2x = 10 2x = —4 Solve as usual.
X =3 x = —2

Thesolutionséf|2x-3|=7arex=5andx=-2



Example 5: Solve the inequality |5 - §| <1

Solution We have

5 _% = ] = —l < S — % < l £
= —6 < —% < —4 S
=3>5>2 Multiply by ——
11 |
—> 3 -~ X =~ - laKe reciprocals

(The symbol <=> is often used by mathematicians to denote the “if and only if”
logical relationship. It also means “implies and is implied by.”)

The original inequality holds if and only if (1/3) < X < (1/2). The solution set is the
open interval (1/3, 1/2).

1.2 Lines, Circles, and Parabolas

1.2.1 Coordinate Geometry and Lines

The points in a plane can be identified with ordered pairs of real numbers. We start by
drawing two perpendicular coordinate lines that intersect at the origin O on each line.
Usually one line is horizontal with positive direction to the right and is called the x-
axis; the other line is vertical with positive direction upward and is called the y-axis.
Any point P in the plane can be located by a unique ordered pair of numbers as
follows:

Draw lines through P perpendicular to the x- and y-axes. These lines intersect the axes
in points with coordinates and as shown in Figure 1.5. Then the point P is assigned the
ordered pair (a, b). The first number a is called the x-coordinate (or abscissa) of P;
the second number b is called the y-coordinate (or ordinate) of P. We say that P is
the point with coordinates (a, b), and we denote the point by the symbol P (a, b).
Several points are labeled with their coordinates in Figure 1.6.



(1,3)
;i P(a, b i °
1 e e ® Pla, b)
T |
Positive y-axis | } Second First
‘“-»_\\“_'\ I quadrant 2 quadrant
| (—, +) (+, +)
2 |
: - 1 [
) ) 1 - . I (-2, 1) (2, 1)
Negative x-axis Origin | {0, 0
e / (1,0)
| | | | Ll oy 5 ! 4 4 X
-3 -2 -1 0 1 "-.\2 a3l _2 -1 0 1 2
-1+ N _ (-2, 1)
Positive x-axis - 1
Negative y-axis Third Fourth
) —2 B quadrant quadrant
(—. =) (+,—)
3+ -2 -
B (1,-2)
Figure 1.5 Figure 1.6

This coordinate system is called the rectangular coordinate system or the
Cartesian coordinate system.

The plane supplied with this coordinate system is called the coordinate plane or
the Cartesian plane.

The x- and y-axes are called the coordinate axes and divide the Cartesian plane into
four quadrants: First quadrant, Second quadrant, Third quadrant and Fourth
quadrant as shown in Figure 1.6. Notice that the First quadrant consists of those
points whose x- and y-coordinates are both positive.

Example 6: Describe and sketch the regions given by the following sets:

@{y) [x=0} () {xy)y=1} ©{xy) Iyl <1}

Solution:
(@) The points whose x-coordinates are O or positive lie on the y-axis or to the
right of it as indicated by the shaded region in Figure 1.7 (a).
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Figure 1.7

(b) The set of all points with y-coordinate 1 is a horizontal line one unit above
the x-axis [see Figure 1.7(b)].
(©) |y <l ifandonlyif-1<y<1
The given region consists of those points in the plane whose y-coordinates lie
between -1 and 1. Thus the region consists of all points that lie between (but not
on) the horizontal linesy = 1 and y = -1. [These lines are shown as dashed lines in
Figure 1.7(c) to indicate that the points on these lines don’t lie in the set.]

1.2.2 Increments and Straight Lines
When a particle moves from one point in the plane to another, the net changes in its
coordinates are called increments. They are calculated by subtracting the
coordinates of the starting point from the coordinates of the ending point. If x
changes from x; to X, the increment in x is:

AX =Xy — Xy

Example 7: In going from the point A(4, -3) to the point B(2, 5) the increments in
the x- and y-coordinates are

Ax=2-4=-2, Ay=5-(-3)=8
From C(5, 6) to D(5, 1) the coordinate increments are

AX=5-5=0, Ay=1-6=-5



See Figure 1.8
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Figure 1.8

1.2.3 Slope of straight line

Slope is a measure of the steepness of the line.

Given two points Py (x4, y1) and P, (X5, Y,) in the plane, we call the increments Ax =
X, — X; and Ay =y, — y; the run and the rise, respectively, between P, and P,. Two
such points always determine a unique straight line (usually called simply a line)
passing through them both. We call the line P, P,.

Any nonvertical line in the plane has the property that the ratio

rise _ Ay _ y2-y1l

run - Ax - x2—x1

has the same value for every choice of the two points P; (x4, y1) and P (X,, y2) on
the line (Figure 1.9). This is because the ratios of corresponding sides for similar
triangles are equal.

10



YA L

| lav=ya-y,
P| (X 1) N __' J = rise

-y

]

Figure 1.9

[ ] DEFINITION The slope of a nonvertical line that passes through the points
P\(x;, »1) and Py(x;, y3) is
Ay wm—n

Ax X» — X

m

The slope of a vertical line is not defined.

Figure 1.10 shows several lines labeled with their slopes. Notice that lines with
positive slope slant upward to the right, whereas lines with negative slope slant
downward to the right. Notice also that the horizontal line has slope 0 because
Ay = 0 and the slop of the vertical line is undefined because Ax = 0.

Figure 1.10

11



Example 8: find the slop of the nonvertical straight line L1 passes through the
points P, (0, 5) and P, (4, 2) and L2 passes P3 (0, -2) and P4 (3, 6).

Solution:
Line L1:
The slope of L1 is m = = = 22721
Ax x2—x1
6-(-2) _ 8
T 3-0 3

That is, y increases 8 units every time x increases 3 units.

Line L2:
The slope of L2 is m = =X = 2221
Ax x2—x1
_ Ay _2-5_ -3

Ax 4-0 4
That is, y decreases 3 units every time X increases 4 units.
Lines L1 and L2 explained in Figure 1.11
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Figure 1.11
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1.2.4 Equation of straight line

(@) Point-Slope Form of the Equation of a Line
Now let’s find an equation of the line that passes through a given point Py (X3, Y1)
and has slope m. A point P(x, y) with x # X, lies on this line if and only if the slope

of the line through P, and P is equal to m; that is:

-y1
y=yl_
x—x1

This equation can be rewritten in the form:

y=y1=m (X—X)

and we observe that this equation is also satisfied when x = x; and y = y,. Therefore
it is an equation of the given line.

The equation
y=y +mx — xp)

is the point-slope equation of the line that passes through the point (x, y;) and
has slope m.

Example 9: Find an equation of the line through (1, -7) with slope — 1/2.

Solution:

Using Point-slope form of the equation of a line with m = -1/2, x; =1 and y,= -7,
we obtain an equation of the line as:

y+7=-1/2(x-1)

which we can rewrite as:
2y +14=-x+1 or x+2y+13=0

Example 10: Write an equation for the line through the point (2, 3) with slope -3/2

Solution:
We substitute x; = 2, y;= 3 and m = -3/2 into the point-slope equation and obtain

13



y=3-3/2(x-2), or y=-3/2(x) +6
When x =0, y = 6 so the line intersects the y-axis aty = 6.
(b) A Line Through Two Points

Example 11: Find an equation of the line through the points (-1, 2) and (3, - 4).
Solution:
By Definition the slope of the line:
—4 — 2 3
3—(-1) 2
Using the point-slope form with x; = -1 and y, = 2, we obtain:

m =

y-2=-3/12(x+1)
or
Xx+2y=1

Example 12: Write an equation for the line through (-2, -1) and (3, 4).
Solution: The line’s slope is

—4 5
—2-3 -5 =

m —

We can use this slope with either of the two given points in the point-slope equation:

With (x;, y1) = (=2, =1) With (x;, y;) = (3, 4)
yv=-—1+1-(x—1(-2)) yv=4+1-(x—3)
y=-1+x+2 yv=4+x—3
y=x+1 - y=x+1

- Same result -

Either way, y = x + 1 is an equation for the line (Figure 1.12)

14
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rm of The Equation of a Line

Suppose a nonvertical line has slope m and y-intercept b. (See Figure 1.13).

0

Figure 1.13

This means it intersects the y-axis at the point (0, b), so the point-slope form of the
equation of the line, with x; = 0 and y, = 0, becomes:

This simplifies as follows:

y—-b=m(x-0)

The equation

is called the slope-intercept equation of the line with slope m and y-intercept b.

y=mx + b

15



Example : Find the intercepts of the axis of the equation y = x* — 1
Solution: For x-intercept, lety=0 — x*-1=0 — x*=1 — x=tI
For y-intercept, letx=0 — y=0-1 — y=-1

In particular, if a line is horizontal, its slope is m = 0, so its equation is y = b, where
b is the y-intercept (see Figure 1.14). A vertical line does not have a slope, but we
can write its equation as x = a, where a is the x-intercept, because the x-coordinate
of every point on the line is a.

Ya

Fi]

0 a X

Figure 1.14

Example 13: Write the standard equations for the vertical and horizontal lines
through point (2, 3).
Solution:

(&, b)=(2,3)
X-intercept =a =2
y-intercept =b =3

- Horizontal line equation:
y=mx+Db
=0x+3
y =3
- Vertical line equation:
X=2
two lines was shown in Figure 1.15

16
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Figure 1.15

(d) The General Equation of a Line

A linear equation or the general equation of a line can be written in the form:

Ax+ By + C=10

where, A, B, and C are constants and A and B are not both O.

We can show that it is the equation of a line:
- If B =0, the equation becomes Ax + C = 0 or x = - C/A, which represents a
vertical line with x-intercept - C/A.
- If B#0, the equation can be rewritten by solving for y:
A C
Y="5*"3
We recognize this as being the slope-intercept form of the equation of a line (m= -

A/B, b= - C/B).

Example 14: Find the slope and y-intercept of the line 8x + 5y = 20
Solution: Solve the equation for y to put it in slope-intercept form:

17



8x + 5y = 20

Sy = —8x + 20
y = —%x + 4,

The slope is m = - 8/5. The y-interceptis b =4

(e) Parallel and Perpendicular Lines
Slopes can be used to show that lines are parallel or perpendicular. The following
facts are proved:

[ ] PARALLEL AND PERPENDICULAR LINES
I. Two nonvertical lines are parallel if and only if they have the same slope.

2. Two lines with slopes m, and m, are perpendicular if and only if mm, = —1;
that is, their slopes are negative reciprocals:

1
m = ——
m,

Example 15: Find an equation of the line through the point (5, 2) that is parallel to
the line 4x + 6y +5 =0.
Solution: The given line can be written in the form

2 5

Y= 3575

which is in slope-intercept form with m = - 2/3. Parallel lines have the same slope,
so the required line has slope — 2/3 and its equation in point-slope form is

y—2=-2/3(x-06)
We can write this equation as 2x + 3y = 16.

Example 16: Show that the lines 2x + 3y =1 and 6x - 4y — 1 = 0 are perpendicular.
Solution: The equations can be written as

18



from which we see that the slopes are
m = —3 and m =3

Since mym, = —1, the lines are perpendicular.

1.2.5 Distance and Circles in the Plane

To find the distance | P,P, | between any two points P; (X3, y1) and P, (X5, y,), we
note that triangle P,P,P; in Figure 1.16 is a right triangle, and so by the
Pythagorean Theorem we have:

|P1P2| = /|P1P3|% + |P2P3|2=\/|x2 — x1|2 + |y2 — y1|?

=/ (x2 — x1)% + (y2 — y1)2

Vi
Py(x2.y.)
Vit A
i
,f’f B
Flxu,y -~ I
T = =T
|i.— V. — —-|r| Plll_:c 1'-['
| | -
0 X Y, X
Figure 1.16

Distance Formula for Points in the Plane
The distance between P(x|. y) and O(x3, y2) is

d = V(Ax) + (Ay)* = Vo — x1)* + (32 — »)%

&

19



Example 17: The distance between (1, -2) and (5, 3) is

VE-12+[B - (-2 =4 +57 = /41

Second-Degree Equations

In the proceeding sections we saw that a first-degree, or linear, equation Ax + By +
C = 0 represents a line. In this section we discuss second-degree equations such as

2 2
X +y'=1 y=x"+1 %+y7=1 Xo-y?P=1
which represent a circle, a parabola, an ellipse, and a hyperbola, respectively.

(a)Circles
To find an equation of the circle with radius r and center (h, k), by definition, the
circle is the set of all points P(x, y) whose distance from the center C(h, k)is r. (See
Figure 1.17).

0 X

Figure 1.17

Thus P is on the circle if and only if |PC| = r. From the distance formula, we have:

Jax—h?2+ @ -k?=r

or equivalently, squaring both sides, we get

20



(=) + (y— K = 1

[ ] EQUATION OF A CIRCLE An equation of the circle with center (A, k) and
radius r is

(x—h*+(y— k' =r
In particular, if the center is the origin (0, 0), the equation is

X+ =1r

Example 18:

(a) The standard equation for the circle of radius 2 centered at (3, 4) is:
(x=3)° +(y-4) = 2’=4
(b) The circle
(x—1)°+ (y +5)* =3

Has h = 1, k = -5 and r = +/3. The center is the point (h, k) = (1, -5) and the radius
isr=+/3.

Example 19: Find the center and radius of the circle
X* + y? +4x — 6y -3 =0.

Solution: We convert the equation to standard form by completing the squares in x
and y:

21



2l ]
x“+y +4dx—6p—3=10 Start with the given equation

Gather terms. Move the constant

2 . (v — e ) =
(x )+ 0 6y )=3 to the right-hand side.
4\ 6\’ Add the square of half th
2 7 ] — B ad the square oI ne =
(1’ + 4x + (j) ) T (.'I' — 6y + (T) ) - coefficient of x to each side of the
equation. Do the same for y. The

) ) parenthetical expressions on the
4 _6 aft- side are non e
34+ |= R left-hand side are now perfect
2 2 squares.

(x? +4x +4) + (P -6y +9)=3+4+9

Write each quadratic as a squared

(x +2P% +(y— 37 =16 line

2ar expression

The center is (-2, 3) and the radius is r = 4.

Example 20: Sketch the graph of the equation x* + y* +2x — 6y +7 =0 by first
showing that it represents a circle and then finding its center and radius.

SOLUTION We first group the x-terms and y-terms as follows:
(x*+ 20+ (= 6y =-T

Then we complete the square within each grouping, adding the appropriate constants to
both sides of the equation:

¥ +2x+ 1)+ (P —6y+9)=-T7T+1+9
or (x+ 1)+ (y—3F=3

Comparing this equation with the standard equation of a circle, we see that h = -1, k
= 3 and r = /3, so the given equation represents a circle with center (-1, 3) and
radius r = /3. It is sketched in Figure 1.18.

22
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Figure 1.18

(b)Parabola
The geometric properties of parabolas will be reviewed later. Here we regard a
parabola as a graph of an equation of the form y = ax? + bx + c.

Example 21: Draw the graph of the parabola y = x*

Solution:

We set up a table of values, plot points, and join them by a smooth curve to obtain
the graph in Figure 1.19.
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Figure 1.19

Figure 1.20 shows the graphs of several parabolas with equations of the form for
various values of the number a. In each case the vertex, the point where the

parabola changes direction, is the origin.

! :L A ] |
III |II II-.I -.'II = 2-1-:
| ‘_._ y= 32
\ [/ f—y=735x°
II"-_ JII."II y
", '?\ Fs ” -
RN X
i
NI |
[ ]\ v—y=—2¥
/ -r—-— vV=—x"
) \ =
I.' ."—'ﬁ =—25
II II \
I 1 \
Figure 1.20

We see that:
The parabola y = ax” opens upward if a > 0
The parabola y = ax® opens downward if a < 0. (as in Figure 1.21)

24



(a) v=ax’, a=0 (b) y=ax® a<0

Figure 1.21

Note that:

The graph of an equation is symmetric with respect to the y-axis if the equation is
unchanged when x is replaced by — x, and

The larger the value of | a | the narrower the parabola

Generally,

The Graphof y=ax’ + bx +¢, a#0
The graph of the equation y = ax®> + bx + ¢,a # 0, is a parabola. The para-
bola opens upward if @ = 0 and downward if @ < 0. The axis 1s the line

X =—a". (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its
x-coordinate is x = —b/2a; its y-coordinate is found by substituting x = —b/2a
in the parabola’s equation.

Example 22: Graph the equation — %xz —x+4

25



Solution: Comparing the equation y = ax® + bx + ¢ with we see that
a=-%, b=-1, c=4

Since a < 0 the parabola opens downward. From Equation (2) the axis is the
vertical line

When x = -1, we have
= 1( 1)% —( 1)+4—9
Y= 73 —2

The vertex is (-1, 9/2).
The x-intercepts are where y = 0:
-(12) X*—x+4=0
x> +2x—8=0
x-2)(x+4)=0
X=2,X=-4

We plot some points, sketch the axis, and use the direction of opening to complete
the graph in Figure 1.22

; g \
Vertex lﬁ[ 1. i }

\
Point symmetric' \
with v-intercept

A

-2.4)

Intercept at v = 4

/

(0, 4)

K

A‘(IH xr=-
— [0 ] [
I

Intercepts at

x=—-4andx =2 Figure 1.22
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If we interchange x and y in the equation y = ax?, the result is x = ay?, which also
represents a parabola. The parabola x = ay” opens to the right if a > 0 and to the left
if a < 0. (See Figure 1.23). This time the parabola is symmetric with respect to the
x-axis because if (x, y) satisfies x = ay?, then so does (X, -y).

Y Vo
.--"'f_f--—--f B "'-H..__\_HH
i /’f/ h \\\
/ b
0 X Y, 0 x
N -
(a) x=ay’, a=0 (b) x=ay, a<0
Figure 1.23

The graph of an equation is symmetric with respect to the x-axis if the equation is
unchanged when y is replaced by —y.

(c)ELLIPSES
The curve with equation
xZ yZ
2 =t

where a and b are positive numbers, is called an ellipse in standard position.

The most important properties of the ellipses are:
- The ellipse is symmetric with respect to both axes, i.e the above Equation is

unchanged if x is replaced by — x or y is replaced by —y.
- The x-intercepts of a graph are the x-coordinates of the points where the
graph intersects the x-axis. They are found by setting y = 0 in the equation of

the graph.
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- The y-intercepts of a graph are the y-coordinates of the points where the
graph intersects the y-axis. They are found by setting x = 0 in the equation of
the graph. See Figure 1.24

YA
(0, b)
— - T
[—a, 0) ;’! \ la, 0]
0 I x
N _j/
— -
(0, —5)
Figure 1.24

Example 23: Sketch the graph of 9x* + 16y” = 144.
Solution: We divide both sides of the equation by 144:
x2 yZ
6t9 =1

The equation is now in the standard form for an ellipse, so we have a* = 16, b* = 9,
a =4 and b = 3. The x-intercepts are £ 4; the y-intercepts are = 3. The graph is

sketched in Figure 1.25.

\ 0
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Figure 1.25

(d)HYPERBOLAS
The curve with equation

xZ 2
7—L=1
a? b2

where a and b are positive numbers, is called a hyperbola in standard position.
The most important properties of the hyperbola are:

- The hyperbola is symmetric with respect to both axes, i.e the above Equation

Is unchanged if x is replaced by — x or y is replaced by .

- The x-intercepts of a graph are the x-coordinates of the points where the
graph intersects the x-axis. They are found by setting y = 0 in the equation of

the graph: y = 0 obtain x* = a’ and x = * a.

- If we put x = 0 in Equation 3, we get y* = - b% which is impossible, so there

IS no y-intercept.
- The hyperbola consists of two parts, called its branches.

- The hyperbola have two asymptotes, which are the lines y = (b/a)x and y = -
(b/a)x shown in Figure 1.26. Both branches of the hyperbola approach the
asymptotes; that is, they come arbitrarily close to the asymptotes. This

involves the idea of a limit, which is discussed in proceeding chapters.
_ Y b
\xi_TEJ 1'_';'1 .-'/,.-"'f
N\ \
AN vl
\ /
AN /

\\| 7/

i i
& 'y

(—a, ) _.-T AN T'-x {a,0)
*,
S SN

A
/-'//// :\\\
7 NS

L

-

Figure 1.26
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By interchanging the roles of and we get an equation of the form

VA

//./ \\\::-\
), —a)
e 0, —a) AN

Figure 1.27

Example 24: Sketch the curve 9x° - 4y* = 36.
Solution: Dividing both sides by 36, we obtain:

xZ yZ
T 9!

which is the standard form of the equation of a hyperbola. Since a? = 4, the x-
intercepts are + 2. Since b” = 9, we have b = 3 and the asymptotes are y = + (3/2) x.

The hyperbola is sketched in Figure 1.28.
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Figure 1.28

If b = a, a hyperbola has the equation x* — y* = a’ (or y* — x* = a%) and is called an
equilateral hyperbola [see Figure 1.29(a)]. Its asymptotes are y = + x, which are
perpendicular.

If an equilateral hyperbola is rotated by 45°, the asymptotes become the x- and y-
axes, and it can be shown that the new equation of the hyperbola is xy = k, where k
is a constant [see Figure 1.29(b)]

Y ¥y a
y=-x y=x
\\ /4 [
\\\ // I|
N\ 4
\\ ! AN
\ / ~—
/ /% I"‘*\ ) RN !
/f \
i, |
/! N '
/ N\
(a] - }.3 =a [b] xXy= k (k=0
Figure 1.29
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1.3 Functions; Domain and Range

Functions arise whenever one quantity depends on another. A function can be
represented by an equation, a graph, a numerical table, or a verbal description.

A function f is a rule that assigns to each element x in a set D exactly one ele-
ment, called f(x). in a set E.

We usually consider functions for which the sets D and E are sets of real numbers.
The set D is called the domain of the function.

The number f(x) is the value of f at x and is read “f of x.”

The range of f is the set of all possible values of f(x) as x varies throughout the
domain.

A symbol that represents an arbitrary number in the domain of a function f is called
an independent variable.

A symbol that represents a number in the range of f is called a dependent
variable.

Thus we can think of the domain as the set of all possible inputs and the range as
the set of all possible outputs if we see the function as a kind of machine (Figure
1.30).

X —= f — f(x)

{1nput) {output)
Figure 1.30

Example 25: Verify the domains and associated ranges of the following functions.

@)y =x’

The formula y = x° gives a real y-value for any real number x, so the domain is (-
w, ). The range of y = x* is [0, o) because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root.
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(b)y = 1/x

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of y =
1/x, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real
numbers, since y = 1/(1/y).That is, for y # 0 the number x = 1/y is the input
assigned to the output value y.

©)y=vx
The formula y = +/x gives a real y-value only if x > 0.
The domain of y = /x is [0, )

The range of y = v/x is [0, ) because every nonnegative number is some number’s
square root.

dy=v4—x
The quantity 4 — x cannot be negative. That is, 4 —x >0, or x <0.
The formula gives real y-values for all x <4. The domain is (-co, 4]
The range of function is [0, «), the set of all nonnegative numbers.

(e)y=v1-—x?

The domain is [-1, 1]
The range is [0, 1]

1.3.1 Graphs of Functions

The most common method for visualizing a function is its graph. If f is a function
with domain D, then its graph is the set of ordered pairs

{(x. f(x)) |x € D}
(Notice that these are input-output pairs.) In other words, the graph of f consists of

all points (x, y) in the coordinate plane such that y = f (x) and x is in the domain of
f.
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Example 26: Graph the function y = x* over the interval [-2, 2].
Solution:

1. Make a table of xy-pairs that satisfy the equation y = X2

(.
—_ b2

b BRI — =
b o = O = s

2. Plot the points (X, y) whose coordinates appear in the table (see Figure 1.31)

L2 L 24
3
2+ 'G%)
LD g 1L (LD
R E) ST R
Figure 1.31
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3. Draw a smooth curve (labeled with its equation) through the plotted points.
(Figure 1.32)

Figure 1.32

1.3.2 Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of
its domain. One example is the absolute value function.

le:{x, x>0
—x, x<0,

whose graph is given in Figure 1.33. The right-hand side of the equation means that
the function equals x if x >0, and equals - x if x <0.

y
L3
y = |x|
_‘?g |
y=x
2 -
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Figure 1.33

Example 27: The function

—X, x<0
flx) = {x?, 0<x<1
1, x>1

The values of f are given by:
y=-x whenx <0,

y=x* when0<x<1and
y=1 whenx>1

The function, however, is just one function whose domain is the entire set of real
numbers (see Figure 1.34)

Figure 1.34
Example 28: A function is defined by

1—x, x=0
f(x) = {xz x<0

Evaluate f(0), f(1)and f(2) and sketch the graph.
Solution:

Since 0<1,wehavef(0)=1-0=1
Since 1 <1,we havef(1)=1-1=0
Since 2 > 1, we have f (2) = 2° = 4
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See Figure 1.35

Ya

Figure 1.35
1.3.3 Increasing and Decreasing Functions
The graph shown in Figure 1.36 rises from A to B, falls from B to C, and rises

again from C to D. The function f is said to be increasing on the interval [a, b],
decreasing on [b, c], and increasing again on [c, d].

¥ B
T D
T ™
y=1x)_~ I I \\ /’II
,/’# I I \ / I
i | | ¢
7| |t flx | T |
1 | | | |
A | | | | |
| I | I | I
| | | I I I .
0 a X, X, b c d X
Figure 1.36
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DEFINITIONS Let f be a function defined on an interval [ and let x, and x; be
any two points in /.

1. If f(x2) = f(x;) whenever x; < x,, then f is said to be increasing on /.

2. If f(x2) < f(x;) whenever x| < x>, then f is said to be decreasing on I.

Example 29: investigate the increasing and decreasing intervals of the functions y
2

=X

Solution:

In the definition of an increasing function it is important to realize that the

inequality f(xy) < f{x,) must be satisfied for every pair of numbers x; and x, in | with

Xo < Xj.

For interval [0, o)

f(1) =1
f(2) =4
So that, according to the 1* definition the function is increasing on the interval [0,
o0
)
For interval (- oo, 0]
f-1)=1
f(-2) =4

The function is decreasing on the interval (- oo, 0]
See Figure 1.37

Figure 1.37
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1.3.4 Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristics symmetry properties.

DEFINITIONS A function v = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

Generally,
The graph of an even function is symmetric about the y-axis. As for the function

f(x) = x* (see Figure 1.38)
Since always f(-x) = f(x)

(—x, v)

0
Figure 1.38

The graph of an odd function is symmetric about the origin.
For example the function y = x® (Figure 1.39)
Always f(-x) = - f(x)

Figure 1.39
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Example 30: Determine whether each of the following functions is even, odd, or
neither even nor odd.
(@) f(x) = x° + x ) gx)=1—x* (c) h(x) =2x—x?

Solution:
(a)
f(-x) = (X)° + () = (-1)°X + (-X)
=X —x=-(X+X)
=-f(x)
Therefore is an odd function.

(b)
9 =1-(x)*=1-x"=g(x)

S0 g is even

(c)
h(-x) = 2(-x) — (-x)* = -2x — X*

Since h(-x) # h(x) and h(-x) # - h(x), we conclude that h is neither even nor odd.

The graphs of the functions are shown in Figure 1.40. Notice that the graph of h is
symmetric neither about the y-axis nor about the origin.

(a) (b) (c)
Figure 1.40
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1.3.5 Trigonometric Functions

(@a)Angles
Angles can be measured in degrees or in radians (abbreviated as rad). The angle
given by a complete revolution contains 360°, which is the same as 2xn rad.

Therefore

7 rad = 180°
and
1rad = (iﬂ)oz 57.3°
0
1°= (=) rad = 0.017°
Example 31:

() Find the radian measure of 60°.
(b) Express 5m/4 rad in degrees.

Solution:
(a) From above equations we see that to convert from degrees to radians we

multiply by ©/180. Therefore
o — Ty\=T
60° = 60 (=) = > rad
(b) To convert from radians to degrees we multiply by 180/ &. Thus
5m 5m (180

Trad = ) ?) = 225

Table 1.2 shows the equivalence between degree and radian measures for some
basic angles.

TABLE 1.2 Angles measured in degrees and radians

Degrees —180 —135 —-90 —45 0 30 45 60 90 120 135 150 180 270 360
. " 3” (1] T (l [ (1] T 2 T 3“ ..-ii 3ii
-adians) —7 — — — - = - = — — T 5 27
® (radians) n 3 3 0 3 3 3 3 3 6 )
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Figure 1.41 shows a sector of a circle with central angle 8 and radius r subtending
an arc with length a.

/'J’ H“\E{
! r N\
/ P ‘
' — r |
i I'I
'.l'\ l-"
S R
-~ R -
Figure 4.41

Since the length of the arc is proportional to the size of the angle, and since the

entire circle has circumference 2z and central angle 2z, we have:
0 a

%=2nr

Solving this equation for # and for a, we obtain

6 =— a=rb

Remember that the above equations are valid only when is measured in radians.

Example 32:

(a) If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?

(b) If a circle has radius 3 cm, what is the length of an arc subtended by a central
angle of 37/8 rad?

Solution:

(a) Using Equation 6 = % and a = r6 with a =6 and r = 5, we see that the angle is
0 =6/5=1.2rad

(b) With r =3 cm and 0 = 37/8 rad, the arc length is:
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3T ot
a—r0—3(?)—?cm
(b)standard position
The standard position of an angle occurs when we place its vertex at the origin of
a coordinate system and its initial side on the positive x-axis as in Figure 4.42.

Vi

terminal
side
| g Initial side

# \ /

]

-y

Figure 4.42: 6> 0

A positive angle is obtained by rotating the initial side counterclockwise until it
coincides with the terminal side. (as in Figure 4.42)
A negative angle are obtained by clockwise rotation as in Figure 4.43

VA

initial side

I
Il

. *

0 I". ‘/'. g X

\ terminal side

Figure 4.43: 0<0
Figure 4.44 shows several examples of angles in standard position. Notice that

different angles can have the same terminal side. For instance, the angles 3m/4, -5
n/4 and 117/4 have the same initial and terminal sides because:
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and 2 rad represents a complete revolution.

oy

'.

.'rl

A 6=1

V4

3w
——2m=——
4

4

5m

3

o H:

3 11w
—+ 2 =—
4 4

3w

n

X

-y
.

Figure 4.44

(c)The Six Basic Trigonometric Functions

For an acute angle @ the six trigonometric functions are defined as ratios of lengths

of sides of a right triangle as follows (see Figure 1.45).

hypotenuse _
opposite
s”ﬂ.H -
adjacent
Figure 1.45
h .
sin § = —22 csc § = 2F
hyp opp
dj hy
cos B = 29 sec H = ﬁ
hyp adj
dr
tan # = op cot @ = 29
adj opp
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We extend this definition to obtuse and negative angles by first placing the angle in
standard position in a circle of radius r.
We then define the trigonometric functions in terms of the coordinates of the point

P(X, y) where the angle’s terminal ray intersects the circle (Figure 1.46).
¥

P(x, ) M~ — -y \
| ST
/ : .y \
L .
ll'll\ X 'D‘ II r -
Figure 1.46
. . y ]
sine: sinf = 7 cosecant: csch = ¥
i X r
cosine: cosf = - secant: sech = X
¥ X
tangent: tanf = cotangent: cotf =

These extended definitions agree with the right-triangle definitions when the angle
IS acute.
Notice also that whenever the quotients are defined,

~ sin#f 1
tan @ = cos 0 cotl = P—

1 1
sec ) = cos @ cscd = sin @

As you can see, tan 6 and sec @ are not defined if x = cos 6 = 0.

This means they are not defined if 8 is +n /2, £37/2,...

Similarly, cot @ and csc @ are not defined for values of 4 for which y = 0, namely 6
=0, £n, £27,...

The exact trigonometric ratios for certain angles can be read from the triangles in
Figure 1.47. For instance,
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A <
V2 il
\ E - | Tﬁp M
1 J3
Figure 1.47
T 1 T 1 T J3
511 I = vf? 511 E = E 511 ? = 2
T 1 T V3 T 1
COoS vy = N COS 5 = 5 COS £l = >
T T 1 T —
tan T =1 tan 5 = \f— tan 3 = 4/

The signs of the trigonometric functions for angles in each of the four quadrants
can be remembered by means of the rule “All Students Take Calculus” or “CAST”
rule shown in Figure 1.48.

sinf@ =0 Y4 all ratios =0
Y A
] :-
T C
tan =0 cos 80
Figure 1.48

Example 33: Find the exact trigonometric ratios for 6 = 2z/3.
Solution: From the triangle in Figure 1.49 we see that:

. 2w 3 27 1 27
sin— = — COS— = — = tan— = —v/3
3 2’ 3 2’ 3
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Figure 1.49

Using a similar method we determined the values of sin é, cos 6, and tan € shown
in Table 1.3

Table 1.3
Degrees ~ —180 —135 —90 —45 0 30 45 60 90 120 135 150 180 270 360
. =37 —r —r T T T T 2 37 S 3
0 (radians) — 1 3 1 0 6 1 3 P 3 4 5 T D 27
s 0 > 1 0 3 5 = ' 7 7 2 010
-\V2 V2 V3 V2o 1 V2 —\3
cose B R R R R R R R
tan 6 0 1 -1 0 ¥ 1 \3 V3 -1 = 2 2 0 0

Example 34: If cos & = 2/5 and 0 < 0 < #/2, find the other five trigonometric

functions of 6.

Solution:
Since cos 8 =2/5, we can label the hypotenuse as having length 5 and the adjacent

side as having length 2 in Figure 1.50. If the opposite side has length x, then the
Pythagorean Theorem gives x* + 4 = 25 and so x* = 21, x = /21.
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[

Figure 1.50

We can now use the diagram to write the other five trigonometric functions:

sinf = vel tanf = ya1
5 2
5 5 2
CSCQ—E secH—E cote—ﬁ

Example 35: Use a calculator to approximate the value of x in Figure 1.51.

16
[
X
40°
Figure 1.51
Solution: From the diagram we see that:
16
tan40° = —
X
Therefore,
= ~ 19.07
X tan 40°
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(d)Trigonometric Identities

A trigonometric identity is a relationship among the trigonometric functions.
The most elementary are the following:

sin 6 cos 6
tan # = cot f = — (1)
cos 6 sin ¢
0= ] 0= L t @ =
eer= sin @ Sec = cos @ corv= tan 6 (2)

For the next identity we refer back to Figure 1.46. The distance formula (or,
equivalently, the Pythagorean Theorem) tells us that x* + y* = r%. Therefore

Sin29+00529=y—+—= =—=1

We have therefore proved one of the most useful of all trigonometric identities:

cos’ @ + sin’ @ = 1. (3)

This equation, true for all values of 4, is the most frequently used identity in
trigonometry.
Dividing this identity in turn by cos® 6 and sin’ 6 gives:

1 + tan’ 8@ = sec? @
1 + cot?@ = csc? @

The identity

sin(—#@) = —sin A

cos(—@) = cos #
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Show that sin is an odd function and cos is an even function.

Since the angles # and 6 + 2x have the same terminal side, we have:

sin(@ + 24r) = sin 6 cos(f + 27) = cos #

The remaining trigonometric identities are all consequences of two basic identities
called the addition formulas:

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y — sin x sin y

By substituting — y for in above equations and using equations [sin (-0) = -sin (0)
and cos (-8) = cos (6)] we obtain the following subtraction formulas:

sin(x — y) = sin x cos ¥ — cos x sin ¥

cos(x — ¥) = cos x cos y + sin x sin y

Then, by dividing the formulas in addition formulas or subtraction formulas, we
obtain the corresponding formulas for tan (x £ y):

tan x + tan y

tan(x + y) =
1 — tan x tan y

tan x — tan y

tan(x — y) =
1 + tan x tan y
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If we put y = x in the addition formulas, we get the double-angle formulas:

sin 2x = 2 sin x cos x

2 7
COS 2X = COS“X — sin“x

Then, by using the identity sin + cos’ = 1, we obtain the following alternate
forms of the double-angle formulas for cos 2x:

cos 2x = 2 cos’y — 1

cos 2x = 1 — 2 sin’x

If we now solve these equations for cos’x and sin’x, we get the following half-
angle formulas, which are useful in integral calculus:

, 1 + cos 2x

cos’x = ———F——
2

o 1 — cos2x

Sin"y = ————

Finally, we state the product formulas, which can be deduced from addition and
subtraction formulas:

sin x cos y = %[sin(x + y) + sin(x — y)]
cos x cos y = 3[cos(x + y) + cos(x — )]

sin x sin y = 3[cos(x — y) — cos(x + )]

Example 36 Find all values of x in the interval [0, 2] such that sin x = sin 2x.
Solution: Using the double-angle formula, we rewrite the given equation as
sin X = 2 sin X €0s X or sinx(1-2cosx)=0
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Therefore, there are two possibilities:

sinx=20 or 1-2cosx=0
x=0,m 2xn CosX=1%
X=m/3, 5n/3

The given equation has five solutions:0, /3, &, 57/3, and 2x.
(e)Periodicity and Graphs of the Trigonometric Functions

The graph of the trigonometric function is obtained by plotting points for one
period and then using the periodic nature of the function to complete the graph.

DEFINITION A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period of f.

We describe this repeating behavior by saying that the six basic trigonometric
functions are periodic:

Periods of Trigonometric Functions
Period =: tan (x + x) = tan x
cot (x + ) = cot x
Period 2n:  sin (x + 2x) = sin x
cos (x + 2x)= cos x
sec (x + 2x)= sec x
csc (x + 2m) = csc x

Example 37: plot the trigonometric function sin x.

Solution:

The function will be: y =f (x) = sin (x)
Domain: - o <X < o0

Range: -1 <y <1
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Make a table for xy values

X y =sin (x)
0 0

/2 1

T 0

3n/2 -1

27 0

- 1/2 -1

-T 0

The plot of sin x was shown in Figure 1.52. The function y = sin x is an odd
function (f (-x) = - f (X))

. y=sinx
/|

|

|

L\ "

_"‘%ij” ﬁm\i:ﬁiﬂ

Figure 1.52

Figure 1.53 shows the graphs of the six basic trigonometric functions using radian
measure. The shading for each trigonometric function indicates its periodicity.
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v=sinx

o

—J|r.r w0 47 w 2o - _i gif_r T
I 2 2% |1 2 2 .
| | | |
Domain: —oo < x << oo Domain: —o0 < x << a0
Range: -l=y=1 Range: -l=y=1
Period: 2w Period: 2w

(a) (b)
y v
+ ¥y=secx ! y=cscx
! ' X 1 | I
dpg—m _ w0 & @ Iw - w0 @« 7 3w 2w
1 ma ] mz m 2 m
3

Domain: x aﬁi%. +
Range: y=-lory=1
Period: 2w

(d)

T....

SIE| ——>

Domain: x = 0, =, £2a, ...
Range: y=-lorv=1
Period: 2w

(e)
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= 1
dpdm xS0 7 /7 3w
2 ¥ . 3

Domain: x #+= + 37
R R R
Ra_nge: —oo I Y <l oo
Period: = (©)
¥
v =cotx
1_
e o 3w Am *
2\ 2 2

Domain: x # 0, o, *2m....
Range: -w <y <
Period:
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CHAPTER 2
Limits and Continuity

2.1 Limits

If the values of f (x) tend to get closer and closer to the number L as x gets closer
and closer to the number a (from either side of a) but x #a..

[1] DEFINITION We write
lim f(x) =L
X—=a
and say "the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)
by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Example 1: Find the limit of the function f (x) = x* — x +2 as x approaches 2.
Solution:

Let’s investigate the behavior of the function f (x) = x* — x +2 for values of x near
2. The following table gives values of f (x) for values of x close to 2, but not equal
to 2.

f(X) X f(x)
1.0 2.000000 3.0 8.000000
1.5 2.750000 2.5 5.750000
1.8 3.440000 2.2 4.640000
1.9 3.710000 2.1 4.310000
1.95 3.852500 2.05 4,152500
1.99 3.970100 2.01 4.030100
1.995 3.985025 2.005 4.015025
1.999 3.997001 2.001 4.003001




w1

approaches + 4
4. 1 T 4‘

=Y

0

P I

As _rappr_oar:hes 2,

Figure 1

From the table and the graph of f (a parabola) shown in Figure 1 we see that when x
is close to 2 (on either side of 2), f () is close to 4. In fact, it appears that we can
make the values of f (x) as close as we like to 4 by taking x sufficiently close to 2.
We express this by saying “the limit of the function f (xX) = x* — x +2 as X
approaches 2 is equal to 4.”

The notation for this is:

lim(x?-x +2)=4

xX—2

Example 2: Guess the value of lim,_,, ;;1

2-1
Solution:
Notice that the function f (x) = (x — 1) / (* — 1) is not defined when x =1, but that
doesn’t matter because the definition of lim,_,, f (x) says that we consider values of
X that are close to a but not equal to a.
The tables below give values of f (x) (correct to six decimal places) for values of x
that approach 1 (but are not equal to 1).



X <1 f(X) X = 1 f(X)

0.5 0.666667 1.5 0.400000
0.9 0.526316 1.1 0.476190
0.99 0.502513 1.01 0 4'3?-312
0.999 0.500250 1.001 0.499750
0.9999 0.500¢ 1.0001 3.49':-31

On the basis of the values in the tables, we make the guess that
lim,,; — =" =05

The value of lim,_,; —— = can be solved to glve same results by:

I x—l_l (x—1)
o1 %2 — 1 xll}}(x—l)(x+1)
li
xl—rgx-l-l

= 0.5

i
xl—rg (1) +1

Example 2 is illustrated by the graph of in Figure 2.

V4
|
™ y=X= |
l . =1
0.5+ e
0 e X
Figure 2



Example: 3
(a) If £ is the identity function f (x )= X, then for any value of x, (Figure 3a),

lim f(x) = lim x = x,
X=X X—Xo

(b) If f is the constant function f (x) = k (function with the constant value k),
then for any value of x, (Figure 3b),

lim f(x) = lim k =k

X—>Xg X—>Xo

y=x
X k y=k
x
o 3 o x
(a) Identity function {b) Constant function

Figure 3
Example 4: Find lim,._,, x—lz If it exists.

Solution: As x becomes close to 0, x* also becomes close to 0, and 1/x*> becomes
very large. (See the table).

1
) .
T 1 I
+0.5 4 |
+0.2 25 M
+0.1 100 [ y=%
+0.05 400 I
+0.01 10,000 / \,
+0.001 1,000,000 " e
0 X
Figure 4



In fact, it appears from the graph of the function f(x) =1/x* shown in Figure 4 that
the values of f (x) can be made arbitrarily large by taking x close enough to 0. Thus
the values of f (x) do not approach a number, so lim,_,, (1/x?) does not exist.
To indicate the kind of behavior exhibited in Example 4, we use the notation:

1

lim— = oo
x—-0X
Example 5: Investigate lim,._,, sin%

Solution:

Again the function f (x) = sin (w/x) is undefined at 0. The graph of function was
shown in Figure 5.

¥y =sin(w/x)

f ,-I.-.r B e
| | |t /""
.I .

Figure 5
The graph indicate that the values of sin (z/x) oscillate between 1 and -1 infinitely

often as x approaches 0.
Since the values of do not approach a fixed number as approaches 0,

lim,osin~  do not exist



2.1.1 The Limit Laws

To calculate limits of functions that are arithmetic combinations of functions
having known limits, we can use several easy rules:

THEOREM 1—Limit Laws If L, M, ¢, and k are real numbers and
lim f(x) = L and lim g(x) = M, then
1. Sum Rule: lim(f(x) + g(x)) =L+ M
2. Difference Rule: lim(f(x) —glx)) =L - M
3. Constant Multiple Rule: lim(k- f(x)) = k- L
4. Product Rule: lm(f(x)-glx)) = L-M
. fx) L

5. Quotient Rule: im —— =55 M=10

¢ M M
6. Power Rule: lim[f(x)]" = L", n a positive integer
7. Root Rule: lim ‘fﬁ =VL=1L l/n n a positive integer

(If n is even, we assume that ]_im_f{:u;} =L=10)

Example 6: Use the observations lim,_,. k = k and lim,_,. x = ¢ (Example 3) and
the properties of limits to find the following limits:

2_
@lim,c(® +4x2 =3) O lime Tt () limyn, VA2 — 3
Solution:

. - - R T . b . S
(a) Im(x’ + 4x° — 3) = lim x” + lim 4x° — lim 3 Sum and Difference Rules
X—* X—*c X—*C I—*C
2 . .
=l + 42 -3 Power and Multiple Rules



lim(x* + x2 — 1)
4, 2 m
(b lim X =1 _x

(uotient Rule

i—c xP4+5 lim(x? + 3)
I—*c
. 4 - 7 .
Im x* + lim x° — lim 1
= i< - x;hc - X Sum and Difference Rules
lim x~ + lim 5
I—*c Xi—*C
4 2
ct+ e — 1
=] Power or Product Rule
et 45
{c) lim Vit — 3 =V lim [4.‘{'2 — 3] Root Rule withn = 2
x—+=2 x—=2
= % lim 4.‘4’2 — lim 3 Difference Rule
x——2 x——2
= V4(-2)Y -3 Product and Multiple Rules
= V16 — 3
=13

THEOREM 2—Limits of Polynomials

pr[x) = a,,x" + ﬂn_lxn_l + - + ﬁ'(],then
lim P(I) = P(C} = {IHC" + ﬁ',,—]C"_I + .-+ + ag.
X—*C

THEOREM 3 —Limits of Rational Functions
If P(x) and O(x) are polynomials and Q(c) # 0, then

o PW PO
w0k 0e)

Example 7: The following calculation illustrates Theorems 2 and 3:

oo x3+4x? -3 (1) +4(-1D*-3 0
llm = =—=900
x——1 x2+5 (—1)2 +5 6




Vx24+100-10

Example 8: Evaluate lim,._,o ——;

Solution: We can create a common factor by multiplying both numerator and
denominator by the conjugate radical expression vx2 + 100 + 10 (obtained by
changing the sign after the square root). The preliminary algebra rationalizes the
numerator:

Va2 + 100 — 10 _ Vot + 100 — 10 Vx® + 100 + 10
x* x? Va2 + 100 + 10
x> + 100 — 100
x}(Vx? + 100 + 10

-

X~

x}(Vx? + 100 + 10
|

Vil + 100 + 10

Therefore,
oVxXE 4100 - 10 . 1
lim 5 = lim -
x—0 x” =05/ + 100 + 10
_ |_ ninat f L at
V0T + 100 + 10

S

= 35 = 0.05.
2.1.2 Indeterminate Forms:
There are seven indeterminate forms:

0/0, 00/o0, 0.00, 00-00, 0°, oo°, and 1

2.1.3 Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the
Sandwich Theorem because it refers to a function f whose values are sandwiched
between the values of two other functions g and h that have the same limit L at a
point c. See Figure 6



— 7~ h

[ Mr

f

Llr———t\r}—%ﬁpﬂ/f :

W/

g

Figure 6

THEOREM 4—The Sandwich Theorem Suppose that g(x) = flx) = hix) for
all x in some open interval containing ¢, except possibly at x = ¢ itself. Suppose
also that

lim g(x) = lim h(x) = L.

I—*C X—*C

Then lim, .. f(x) = L.

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching
Theorem.

Example 9: Given that
2 2
1-Z<u()<1+= forallx#0

find lim,_,, u(x), no matter how complicated u is.

Solution: Since
lim_ (1 — (x2/4)) =1 andlim_,,(1+ (x2/2)) =1,

the Sandwich Theorem implies that lim,_,, u(x) = 1 (Figure 7).



Figure 7

Example 10: Show that lim,._, x2 sin% = 0.
Solution: First note that we cannot use

. 1 . o1
lim x?sin— = lim x? - lim 5|n;

x—0 x 1—0 x—0

because lim,_., sin(1/x) does not exist (see Example 4 in Section 2.2). However, since

we have, as illustrated by Figure 8,

1
—x% = x25|n¥5; X2

We know that
limx?=0 and lim(—=x*) =10

X—0 i—0

Taking f(x) = —x? g(x) = x?sin(1/x), and h(x) = x? in the Squeeze Theorem, we
obtain

, 1
limx%sin— =10
X

X—0

10



V ok
y—4X A
._.U II 1
.__r v = _.1._
Figure 8

2.1.4 One-Sided Limits

In this section we extend the limit concept to one-sided limits, which are limits as x
approaches the number ¢ from the left-hand side (where x < c¢) or the right-hand
side (x> c) only.

THEOREM 6 A function f(x) has a limit as x approaches ¢ if and only if it has
left-hand and right-hand limits there and these one-sided limits are equal:

lim f(x) = L = lim f(x) =L and lim f(x) = L.

X—*c X—*C X—*C

In another word:
e Right-hand limit is the limit of f(x) as x approaches ¢ from the right, or

lim, .+ f(x)

e Left-hand limit is the limit of f(x) as x approaches ¢ from the left, or

limx—w_ f(x)
e lim,_.f(x)=Lifandonlyiflim,_+ f(x) = L and lim,_.- f(x) = L

Example 11: Let

11



(@) Find lim,,_,,+ f(x) and lim,,._,,- f(x)
(b) Does lim,_,, f(x) exist ? why ?

Solution:
@ lim,_p+ f(x) = lim, o+ fG+1)=2/2+1=2
lim,_,,- f(x) =lim,,,-(3—x)=3-2=1
(b)limy o+ f(x) # limy,,- f(x)
lim,_,, f(x) does not exist
Example 12: let f (x)= {12_ x?, ;C: 11

(@) Find lim,,_, 4+ f(x) and lim,_,;- f(x)
(b) Does lim,._,; f(x) exist ? why ?
(c) Graph f (x)

Solution:
(a)lim,_ .+ f(x) =lim,_,+ 1 —x2=1-(1)*=0
limy,_ - f(x) =lim,,;-1—x2=1-(1)*=0
(b)lim,,_,;+ f(x) = lim,_- f(x), lim,_; f(x) exist

2.1.5 Limits Involving (sin 6/0)
A central fact about (sin 6/6) is that in radian measure its limitas & — 0 is 1.

THEOREM 7

sinfl

=1 (# 1n radians) (1)

dim =g

Proof The plan is to show that the right-hand and left-hand limits are both 1. Then
we will know that the two-sided limit is 1 as well.

12



To show that the right-hand limit is 1, we begin with positive values of less than

n/2 (Figure 9).

tan @

Figure 9
Area ADAP < area sector Q4P << area AOAT.

We can express these areas in terms of # as follows:

(1)sinf) = zlsin 6

Area AOAP = %base * height = %
Loy Lo _ 8
AreasectcrrﬂAP—zrﬂ'— [I}ﬁ'—2 (2)
Area AOAT = %base % height = %(I}[tan f) = zltan f.

Thus,
lsinllfi' < lﬂ' < lt,anllfi'
2 "2 2 '

This last inequality goes the same way if we divide all three terms by the number

(1/2) sin 8, which is positive since 0 << § < 7/2:

f |
= sin B = cos f°

Taking reciprocals reverses the inequalities:

13



Since limy_,," cos @ = 1, the Sandwich theorem gives:

. sinfl
lim = 1.
g—0° 0

Recall that sinf and # are both odd functions (Section 1.1). Therefore, f(#)=
(sin@)/6 is an even function, with a graph symmetric about the y-axis (see Figure 2.32).
This symmetry implies that the left-hand limit at ( exists and has the same value as the

right-hand limit:

lim sin — 1 = lim sin
B—s=l H B—=0" H !
s0 limp_.q (sin 8)/8 = 1 by Theorem 6. m

¥
|.T. _sin#f

‘/‘Y =5 (radians)
| | .
i P

|
2 3w

£

Figure 10
Example 13: show that
(@) limyop =" =0 and (b lim, o s =2

Solution:

(a) Using the half-angle formula cos h = 1 — 2 sin®*(h/2), we calculate

lim cosh — 1 _ lim — 2sin’ (h/2)

=0  h hi—0 h
= _,;I.i_ll?:. Sli,gllfl-lsini'il' Let
_ _ Eq. (1) and Example 11a
= —(1)(0) = 0. in Section 2.2

14



(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 3x. We produce it by multiplying numerator and denominator by 2/3:

li sin2x _ I (2/5) - sin 2x
20 5% a0 (2/5)-5x
_2 lim sin 2x Mow, Eq. (1) applies with
Si—0 x v
222
=3 (1) = 5 |
- . tant 2t
Example 14: Find lim,_, %
Solution  From the definition of tan f and sec 2¢, we have
I tan f sec 2t —ll' sinf 1 1
i 3t — 3,077 “cost cos 2t
_ 1 _1 Eq. (1) and Example 11b
2.1.6 Limits at Infinity
General rules:
. 1 . 1
lim,,_,q - = 0, lim,_,_q - = 0
im, ok =k lim,_ok=k
. sin@ ]
lim,_ o —~ = 0, to prove it:
. -1 sin@ 1
-1 < < =+ — < < -
I1<sinf6<1 [+0] Y

limg_, _71 =0and limgﬁw% = 0, then from Sandwich theorem:

y sint9_0
o O

15



Limits at Infinity of Rational Functions
There are two methods:

1. Divide both the numerator and the denominator by the highest power of x in
denominator.
2. Suppose that x = 1/h and find limit as h approaches zero.

Note: for rational function 8

. If degree of f(x) less than degree of g(x), then lim,_, ;o ! Ex;
2. If degree of f(x) equals degree of g(x), then lim,_, ! E ; is finite.
3. If degree of f(x) greater than degree of g(x), then lim,,_,; o, % Is infinite.
Example 15: find lim,._, . %
: "2—@ r X=4t3  0—4+0
Method 1: lim,._, % =lim, o Z—xizx == == ®

Method 2: letx=1/h,h — 0

1 1 1 4 1-4h+7h3
lim (H)3_4(H) +7 _ lim B2t _ lim h3
1 h—0 (1)2_3 =11 h—0 2 =1 h—-0 2—3h2
h h2 h2
1-4h+7h3 _1- -4(0)+7(0) _ 1
limy,_,q ===
h(2-3h2)  0(2-3(0)) O

3/245

Example 16: Find lim,._,, xxﬁ

x3/2 g
x3/2+x3/2 i x3/2 _ 140

= My 00 =
’—+ 4 ’1+ X \/1+ \/_
x3 " x3

lim,_ e =1

16



2.1.7 Absolute Value in Limit Problems

Example 17: Find lim,,_,_,(x + 3) li:'
Solution:

lim,_,_p+(x +3) 22 = lim,_,_p+ (x + 3) 33
=lim,,_,+(x+3)=-2+3=1

lim,,_p-(x +3) 22 = lim,_,_,- (x + 3) ‘(fc":j))

= lim,,_,-(x + 3)(=1) = (- 2+ 3) (-1) = -1

17



2.2 Continuity

We noticed that the limit of a function as x approaches a can often be found simply
by calculating the value of the function at a. Functions with this property are called
continuous at a.

[1] DEFINITION A function f is continuous at a number a if

Lin] f(x) ="f(a)

Notice that Definition | implicitly requires three things if f is continuous at a:
1. f (@) is defined (that is, a is in the domain of f)

2. lim._,, f () exists

3.lim_,f(x)=f(a)

Example 18: Where are each of the following functions discontinuous?

(8) f(x) = =22
b _ xiz ifx+0
(0)f ) {1 ifx=0

x%Z—x-2

©f&) = {—1 w2

if x =2

Solution:
(@) Notice that f (2) is not defined, so f is discontinuous at 2. Later we’ll see why IS
continuous at all other numbers.
(b) Here f (0) is defined but
lim,_o f(X) = lim,_,o 1/x?

does not exist. So f is discontinuous at O.
(c) Here f (2) is defined and

. _ xz—x—Z_l_ (x—2)(x+1)_l_ =3
xl—r>r21f(x)_x1£r21 x—2 _x1£r21 x—2 _xl—r>r21(x+ )_

18



exists. But
lim,,, f(x) #f(2)

so f is not continuous at 2. See Figure 11

I / l Itk /l |
ol | 5 «x 0 x / ol

[§%]
-y

St L ifx Eox=2 e
{a]f[.'t'}:jxflr,z [b}_f{x]:{_x: if x#0 {C}fl{x:lz[ =7 if x£2
) 1 ifx=0 1 if x=2

Figure 11

DEFINITION A function f is continuous from the right at a number a if

lim f(x) =f(a)

¥—at
and f is continuous from the left at a if

xl_im_ f(x) = f(a)

[3] DEFINITION A function f is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

19



Example 19: check the continuity of f (x) atx =0, 1, 2, 3 and 4

(2—x, 0<x <1
2, 1<x <2
3, x=2

LZx—Z, 2<x <3
10—-2x, 3<x <4

Solution:

Atx=0:

1. £(0)=2-0=0
2. lim_ o f(X)=lim_, 2—-x=2-0=2
3. £(0) = limg_," f (X)

the function is continuous at x = 0.

Atx=1:

1. f(1)=2
2. lime, " f(X) = lim_,,"2=2

lim_,; f(x)=lim_,;2-x=2-1=1
3. 2#1 lim,; f(x) does not exist

The function is not continuous at x = 1

At x = 2:

1. f(2)=3
2. lim_, f(x)=1lim_,"2x-2=2(2)-2=2
lim_, f(x)=1lim_,2=2
3. f(2) #lim,_,, the function is not continuous at x = 2

At x = 3:

1. f(3)=2(3)-2=4
2. lim_;" f(x)=1lim_;"10-2x=10-2(3) =4

20



lim_; f(X)=1lim_; 2x-2=23)-2=4
4=4 lim_;f(x)=4
3. £(3)=1lim,_; f(x) the function is continuous at x = 3

At x =4:

1. f(4)=10-2(4)=2
2. lim_ 4 f(x)=1lim,,,10-2x=10-2(4) =2
3. f(4) =lim,_4 f(x) the function is continuous at x = 4.

By graphing the function we can check the continuity of the function as shown in
Figure

AN

Figure 12

Example 20: At what points is the function f (x) continuous?

1, x <0

fX)=4J1-x2, 0<x<1

x —1, x>1
Solution:
Atx=0

1. f(0)=/1-(0)2=V1I=1
2. lim,_ o+ f(x)=/1—=(0)2=V/1=1

lim,_o- f(x)=lim, ;1 1=1

21



lirnx—>0 f(x) =1
3. £(0) =lim,_, f(x) f(x)iscontinuousatx=0

Atx=0

1. f(1)=0
2. lim,_ 4+ f(x) =lim,,;+x—-1=1-1=0

lim,_ - f(x) =lim,,,-/1—-(1)?=0
lirnx—>1 f(X) =0
3. f(1) =lim,_; f(x) f(x)continuousatx =1

For x <0:

f (x) is continuous function

For x> 1:

f (x) = x—1 is continuous function

The function is continuous at every point

Example 21: Find the points at which y = (x* — 1) / (x* — 1) is discontinuous.
Solution:
The function to be discontinuous, the denominator must equal to zero:

Sothat, x> -1=0 x*=1 x==1

Example 22: What value should be assigned to a to make the function

_(x*—-1, x<3
f(x)_{Zax, x >3

continuous atx =3 ?

22



Solution: to make f (x) continuous at x = 3:
lim,_; f(x) =f(3)

lime; f(X)=lim_yx*-1=3)°-1=8
lim,_; f(x)=8
f(3)=2ax=2*a*3=6a

8=6a a=6/8=4/3

[3] DEFINITION A function f is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

Example 23: Show that the function f(x) =1 —+v1 — x2 is continuous on the
interval [-1, 1].

Solution:
The function does not have a left-hand limit at x = -1 or a right-hand limit at x = 1.
lim,,_4+ f(x)=1=1f(-1) and
lim,1- £(x) =1=1f (1)
So f is continuous from the right at -1 and continuous from the left at 1. Therefore,
according to Definition, f is continuous on [-1, 1].
The graph of is sketched in Figure . It is the lower half of the circle:
X+ (y-17%=1

YA

fr)=1—-y1—x7
.Ill“ l.'ll
\

AN } f//

-y

Figure 13
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THEOREM 8—Properties of Continuous Functions If the functions f and
g are continuous at x = ¢, then the following combinations are continuous at
x=¢

1. Sums: f+e

2. Differences: f—g

3. Constant multiples: k- f, for any number k

4. Products: fe

5. Quotients: fle. provided g(c) # 0

6. Powers: f". napositive integer

7. Roots: \Y J_f‘_ provided it is defined on an open interval

containing ¢, where n is a positive integer

2.2.1 Continuous Extension to a Point

Example 24: Show that

x%24+x-6

fO) = /7 x#2
has a continuous extension to x = 2, and find that extension.

Solution:
Although f(2) is not defined, if x # 2 we have
_ x%+x-6 _ (x-2)(x+3) _ x+3
f(x) T ox2-4 (x-2)(x+2)  x+2

The new function
x+3

F(x)=x+2

is equal to f(x) for x # 2 but is continuous at x = 2, having there the value of 5/4.

Thus F is the continuous extension of f to X = 2, and:

. 2+x—6 _ . 5
hmx—>2xxz—f4:hmx—>2f(x)zz
x2+x—6 9
_ X
fay =4 ¥4
Z, X =2

24



This form is called the continuous extension of the original function to the x = 2.
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CHAPTER 3
Differentiation

The problem of finding the tangent line to a curve and the problem of finding the
velocity of an object both involve finding the same type of limit, as we saw in
chapter two. This special type of limit is called a derivative and we will see that it
can be interpreted as a rate of change in any of the sciences or engineering.

3.1 Tangents and the Derivative at a Point

To find a tangent to an arbitrary curve y = f () at a point P(X,, f(X,)), we calculate
the slope of the secant through P and a nearby point Q(x, + h, f(x, + h)).We then
investigate the limit of the slope as h — 0 (Figure 1). If the limit exists, we call it
the slope of the curve at P and define the tangent at P to be the line through P
having this slope.

v
'.' r
y=fx) |

Qixg + b, flxg + B0
/i
/ Iﬁ'r': + ) — fixg)

-

|
I
A
]
|

0 Xg xp + h

Figure 1

DEFINITIONS The slope of the curve y = f(x) at the point P(xg, f(xg)) is the
number

. flx + 'ef} - f'{-‘-'il]
m

m = In
h—0 h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.




Example 1

(a) Find the slope of the curve y = 1/x at any point x = a #0. What is the slope at
the point x = -1?

(b) Where does the slope equal — ¥%4?

(c) What happens to the tangent to the curve at the point (a, 1/a) as a changes?
Solution:

(a) Here f(x) = 1/x. The slope at (a, 1/a) is

1 1
. f[a+h}—f[a}_l_ g+;;_ﬁ_ll 1a —la+h)
HI—IH] h B Hl—rﬂl h B JIE}] h ala + h)
= lim __—h = lim _—1= L
h—0 hala + h)  r—o0 ala + h) a*’

Notice how we had to keep writing “lim;_,,” before each fraction until the stage
where we could evaluate the limit by substituting h = 0. The number a may be
positive or negative, but not 0. When a = -1, the slope is -1/ (-1)* = -1 (Figure 2).

1

slope 1s —

slope 1s -1
at x = -1

Figure 2



(b) The slope of y = 1/x at the point where x = a is -1/ a°. It will be provided that
-1/a® = - 1/4

This equation is equivalent to a®> = 4, so a = 2 or a = -2. The curve has slope -1/4 at
the two points (2, 1/2) and (-2, -1/2) (Figure 3).

slope is 3

Figure 3

(c) The slope -1/a* is always negative if a # 0. As a — 0", the slope approaches -oo
and the tangent becomes increasingly steep (Figure 3). We see this situation again
as a — 0 . As a moves away from the origin in either direction, the slope
approaches 0 and the tangent levels off to become horizontal.

3.2 Rates of Change: Derivative at a Point
The expression

f(xo +h) = f(x0)

n h+0

is called the difference quotient of f at x, with increment h. If the difference
quotient has a limit as h approaches zero, that limit is given a special name and
notation.



DEFINITION  The derivative of a function f at a point xy, denoted f'(xp), is

f(xo + h) — fxo)

r ; — Il
f {'-ﬁ)) hl—lz}] h

provided this limit exists.

3.3 Summary
All of these ideas refer to the same limit.

The following are all interpretations for the limit of the difference quotient,

. flxg = h) — flxg)
lim .

h—0 h

The slope of the graph of vy = f(x) atx = x;
The slope of the tangent to the curve y = f(x)atx = x,

The rate of change of f(x) with respecttoxatx = xg

g @B

The derivative f'(x,) at a point

3.4 The Derivative as a Function

In the last section we defined the derivative of y = f (X) at the point x = X, to be the
limit
+ h) —
Flx) = tim LG E D) — FG)

h-0 h

We now investigate the derivative as a function derived from f by considering the
limit at each point x in the domain of f.



DEFINITION  The derivative of the function f(x) with respect to the variable x is
the function f* whose value at x is

f'(x) = lim flx + h) — j&x)

h—0 h

provided the limit exists.

The process of calculating a derivative is called differentiation. To emphasize the
idea that differentiation is an operation performed on a function y = f(x), we use the
notation

d
—f()

There are many ways to denote the derivative of a function y = f(x), where the
independent variable is x and the dependent variable is y. Some common
alternative notations for the derivative are:

d d d
fe =y ==L =L = D) = Def )

Example 2: by using the definition of the derivative, find dy/dx of the function y =
5x° + 8x* — 3x +4
Solution:

f (x) = 5x° + 8x* — 3x +4
f(x +Ax) = 5(x +Ax)> + 8(x +Ax)* - 3(x +Ax) + 4
dy | fG+h) - ()

dx Ax—0 Ax

. 5(x +Ax)3 + 8(x +Ax)?-3(x +Ax)+ 4—5x3— 8x%+ 3x—4
im

Ax—0 Ax

5(x3 4+ 3x% Ax + 3xAx? + Ax®) + 8(x% + 2xAx + Ax?) —3x —3Ax + 4 —5x3— 8x% + 3x — 4
Ax—0 Ax

5x3 + 15x2% Ax + 15xAx? + 5Ax3 + 8x? + 16xAx + 8Ax? — 3x — 3Ax — 5x3 — 8x% 4+ 3x
Ax—0 Ax




15x% Ax + 15xAx? + 5Ax3 + 16xAx + 8Ax? — 3Ax

lim
Ax—0 Ax

Alim0 15x2 + 15xAx + 5Ax? 4+ 16x + 8Ax — 3
X—

=15x*+ 16X —3

3.5 Differentiation Rules

Derivative of a Constant Function
If f has the constant value f(x) = c, then
af — d

dy E[C} = 0.

Example 3: L5=0
dx

Power Rule (General Version)
If n is any real number, then

d n n—1
— X" = HX
dx ’

for all x where the powers x” and x"~ ! are defined.

Example 4: Differentiate the following equations:

@, OXF ©x7% @ (@x

() V7




Solution:

—d 3 — 3-1 = 2 —ar 2."|I3 = z ':2.-";3]_] — z _l."f3

(a) dr(x )= 3x Ix (b) dx(x ) X ¥

(©) (xV3) = Vax (d) - (‘{4) T = 4 4x =
d a3, _4 @3- _ _4_—n

@) (™ )= 73 -3

d (/277 - (4@ — LT N+ w21 — Ly o NS
(f) dr("\fx ) dx(x ) 1 >y X 2{_2 mIVX

Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

i{c‘u) = c@
dx dx’

Example 5: Differentiate the equation y = 3x°

Solution: Z—z (3 x%) =3 * 2x = 6x

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum v + v is differentiable
at every point where # and v are both differentiable. At such points,
du | dv

ar —_
dx(u+v)_ci\f+ dx”

Example 6: Find the derivative of the polynomial y = x> + (4/3) x* — 5x + 1.

ion® = 4,3, 4(4,2)_42 4
Solutlon.dx— — X7+ — (3x) — (5x)+dx(1)

= 3x* + (4/3)*2x -5+ 0



= 3x* + (8/3)*2x — 5

Derivative Product Rule

If 4 and v are differentiable at x, then so is their product uv, and

i{:w} = ud—u + wE
dx

dx dx’

Solution:
(a) From the Product Rule we find:

Example 7: find the derivative of y = (x* + 1) (x* + 3).

%[{f FDE )] = 62+ D) + 6 432 L)

=3+ 3+t 4 e
= Sx* + 33 + 6.
(b) This particular product can be differentiated as well (perhaps better) by
multiplying out the original expression for y and differentiating the resulting
polynomial:

y=@+ D +3D=x"+x+ W+ 3
dy

- = Sx* 4+ 3x? 4+ 6.
dx

Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

p o _ v
d fu\ _ dx
dx \V /) z '

-

2_
Example 8: find the derivative of y = ’;Hf
Solution: apply the Quotient Rule:




dy (P +1)-2t — (2 —1)-3

dr (F + 1)

2t + 21 — 3% + 342
(F + 1)

4+ 3+
(1} + ]}2

Example 9: Find an equation for the tangent to the curve y = x +1/x at x = 2.
Solution:

At x =2:

y=2+%=5/2

point (2, 5/2)

y=x+§

() (0)-(1)(@)

(5 —y2) =m (X~ x,)
(y—5/2) =3/4 (x - 2)
(2y — 5)/2 = 3(x — 2)/4

8y —20=6(x —2)
8y —20=6x-12
8y-6x—-8=0
y=6/8x+1

Example 10: Find the point on the curve y = x® + x* — 1 where the tangent is
parallel to the x- axis.

Solution:

Slope = dy/dx = 3x° + 2x

When the tangent is parallel to the x-axis, m = 0.

3°+2x=0

X(Bx+2)=0

X=0or3x+2=0 x=-2/3

atx=0 y=-1



P, (0, -1)
Atx =-2/3 y=-23/27
P, = (-2/3, -23/27)

Example 11: Does the curve y = x* — 2x* + 2 have any horizontal tangents? If so,
where?
Solution: The horizontal tangents, if any, occur where the slope dy /dx is zero. We
have:
dy/dx = d/dx (x* — 2x* + 2)
= 4% — 4x

Now solve the equation dy/dx = 0 for x:

4 —4x =0

Ax(x*-1)=0

x=0,1,-1
The curve y = x4 — 2x2 + 2 has horizontal tangents at x = 0, 1 and -1. The
corresponding points on the curve are (0, 2), (1, 1) and (-1, 1)

3.6 Derivatives of Trigonometric Functions
3.6.1 Derivative of the Sine Function

sin(x + ) = sinxcosh + cosxsinh.

If fix) = sinx, then

, . flx+ h) — flx) . sin(x + h) — sinx
flix) = lim = lim derivative definitio
h—0 h fi—0 h
(sinxcosh + cosxsinh) — sinx . sinx{cosh — 1) + cosxsinh
= lim = lim
fi—sl h h—sl) h
. . cosh — 1 . sin h
= lm [sinx——— | 4+ lim | cosx-
h—0 h h—0 h
. . cosh — 1 . sinh .
= ginx* lim ——— + cosx* lim = ginx+*0 + cosx+ 1 = cosx.

[ h h—0 h |
S . - . CAMRE 23 an

it lmmt heorem 7, Section 2.4

10



The derivative of the sine function is the cosine function:

dx SNX) — COsX.

The derivative of the cosine function is the negative of the sine function:

4 (cosx) = —sinx.

dx

Example 12: find the derivatives of the following functions:
(@)y =sin x cos x
(b)y — cosx

1-sinx

Solution:

(@)

¥ = SINXCOSX:

ﬁ = sin T(_I[CGSI]I + cos ri{sin x)
dx T dx T dx ’
= sinx(—sinx) + cosx(cosx)
bl - 7
= cos“x — sin“x
y COSX
g | — sinx’

Cod o d
dv (1 — sml}d‘([CDSJ} cus.rdxll sinx)

dr (1 — sinx)’

(1 — sinx)(—sinx) — cosx(0 — cosx)

(1 — sinx)?
__1 — sinx
(1 — sinx)?
— ;
1 — sinx

11



3.6.2 Derivatives of the Other Basic Trigonometric Functions

The derivatives of the other triconometric functions:

ii' 7 (i'l ]
—(tanx) = sec x —lcotx) = —csc™x

dx ) - dx (

d N ) ) d N ) )
—(secx) = secxtanx —(cscx) = —cscxcotx
dx dx

Example 13: derive the following equations:
y = CO0S X tan3x

y = tan+v3x
— oin2l

y = sin (x)

Solution:

dy/dx = cos x (sec” 3x *3) + tan 3x (- sin x)
= 3 cos X sec? 3x — sin x tan 3x

dy/dx = sec? (3x)¥2* 15 (3x) M2 *3
> sec?\3x

2v/3x

1
y = sin()?
dy/dx = 2 (sin G) X cos (i) X (—1 X x72))
dy/dx = 2(sin (i) X COS G) X (;—21)

_-2 .1 1
= —sin=cos=
X X X

Example 14: find the point on the curve y = tan x, -n/2 < x < /2, where the tangent
is parallel to the liney = 2 x

Solution:
Slope of the line y = 2x is dy/dx = 2

12



Slope of the curve y = tan x should be equal to 2 (parallel to line y = 2x)

— 2, 1

dy/ldx = SECTX = —
=2

cos?x
Cos? X = Y

-+ 141
COS X = i\ﬁ = iﬁ
If cos x = — % x out of interval (-n/2, ©/2)
Ifcosx:% X=m/4 and X = - /4

Forx=n/4 y=tanm/4=1
Forx=-n/4 y=tan-m/4=-1
The points are (n /4, 1) and (- /4, -1)

3.7 The Chain Rule
The derivative of the composite function f(g(x)) at X is the derivative of f at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 4).

Composite f - g
"~ Rate of change at
xis f{glx)) - g'(x).

.

/_, ; Jlr "x\\\
y £ T TN
pa Rate of change L ' Rate of change ™~ N
—&—— atxisgix), —e—— atg(x)isf(gx). _
X = g(x) v = flu) = flg(x))
Figure 4

13



is differentiable at x, and

(feg)x)=flgx) g'x).

In Leibniz’s notation, if y = f(u) and u = g(x), then

@ _ & du
dx  du dx’
where dy/du is evaluated at u = g(x).

THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x)
and g(x) is differentiable at x, then the composite function (f ¢ g)(x) = f(g(x))

Example 15: If y = x* + 2x +1, x = 3u® + 1, find dy/du.

Solution:
Method 1: substitute x function in y function:
y=(@u*+1)*+2@Bu’+1)+1
=o' +6UP+1+6U"+2+1
=ou’ + 12u° + 4
dy/dx = 36u° + 24u

Method 2: Chain Rule

dy/du = dy/dx * dx/du

dy/dx =2x + 2, dx/du=6u

dy/du = (2x + 2) (6u) = [ 2(3u® + 1) + 2] (6u)
= (6u® + 4) (6u)
= (36u®— 24u)

Example 16: Find dy/dt for y = sin (t* + 6) by using Chain Rule
Solution:
Lety=sinuandu=t"+6
dy/dt = dy/du * du/dt
dy/du = cos u, du/dt=2t
dy/dx = cos u * 2t
= cos (t* + 6) * 2t
= 2t cos(t* + 6)

14



3.8 Repeated Use of the Chain Rule
We sometimes have to use the Chain Rule two or more times to find a derivative.

Example 17: Find the derivative of function g (t) = tan (5 - sin 2t).

Solution:

Notice here that the tangent is a function of 5 - sin 2t whereas the sine is a function
of 2t, which is itself a function of t. Therefore, by the Chain Rule:

oo d L
gt = 7 (tan (5 — sin 21))

= sec’(5 — sin 2:}-%{5 — sin 2f)

= sec’(5 — sin 2f) - (0 — COS 2:-%[2?))

= sec?(5 — sin2t) - (—cos 2t) -2

= —2(cos 2t) sec’ (5 — sin 2t).

Example 18: Show that the slope of every line tangent to the curve y = 1/(1 — 2x)*

IS positive.

Solution We find the derivative:
dy d { — 9
dx  dx ( X)

___6
(1 — 2x)¥
At any point (x, y) on the curve, x # % and the slope of the tangent line is :
dy 6
dx ~ (1—2x)*

the quotient of two positive numbers.

15



3.9 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation
of the form y = f(x) that expresses y explicitly in terms of the variable x. We have
learned rules for differentiating functions defined in this way. Another situation
occurs when we encounter equations like

XX +y —0xy=0,y’—x=0o0orx*+y*—25=0.

These equations define an implicit relation between the variables x and y. In some
cases we may be able to solve such an equation for y as an explicit function (or
even several functions) of x. When we cannot put an equation F(x, y) =0 in the
form y = f(x) to differentiate it in the usual way, we may still be able to find dy/dx
by implicit differentiation. This section describes the technique.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation and solve for dy/dk.

Example 19:
(a) If X2 + y* = 25, find dy/dx.
(b) Find an equation of the tangent to the circle x* + y* = 25 at the point (3, 4).
Solution:
(a) Differentiate both sides of the equation x* + y* = 25

a4 e,y 9
dx(}( +y}_dx(25)

L
dx{}(}+dx{y} 0
Remembering that y is a function of x and using the Chain Rule, we have
d .z d .29y dy
- = — — — 2 —
dx %) dy 'y}dx ydx
dy
Th 2X + 2y —=20
us X Y ax

16



Now we solve this equation for dy/dx:
dy/dx = - xly

(b) At the point (3, 4) we have x =3 and y =4, so
dy/dx = -3/4
An equation of the tangent to the circle at (3, 4) is therefore
y—4=-3/4(x—3) or3x +4y =25
Example 20: Find dy/dx if y* = x* + sin xy.

Solution We differentiate the equation implicitly.
y? = x? + sinxy

{j,—i [13| = %{1‘2} + % [:s'm J.'_l‘:' | |.:.;.;I-m - ¢ :
ﬂ[‘l' d ¢ ... treating y as a function of
2_1*3 = 2x + (cos -"".1'}3 [x) v and using the Chain Rule.
5 dy o _ _aﬁ.')
y= =2+ (cosxy)| ) +x— reat ¥ as a product

dy dy
Mp — o - —_— = Ty wrl b L_ollect terms wit f
2y (cos :1._1}(:1. d'.l.‘) 2x + (cosxy) lect te

dy
(2y — xcos :1.'_1‘}3 = 2x + vcosxy

dv  2x + ycosxy

dx ~ 2y — xcosxy
3.10 Derivatives of Higher Order
Example21: Find d%y/dx? if 2x° — 3y* = 8.
Solution:

To start, we differentiate both sides of the equation with respect to x in order to find
y = dy/dx.

17



d

d o3 a0 _d
.{f_‘r: (Lx 3_1 } (i'&' {S}
6_?('2 _ 6_1-)“‘ — D I'reat un 1
2
¥ = YT wheny # 0 Solve for y"

We now apply the Quotient Rule to find »".
2 Yor — yiqs 2
h_d (T_) _ ooy A
y' = - = 3 =5 — 3
a’.‘a’ J _1|-" J _'|_."

. . . 5 -
Finally, we substitute " = x*/y to express y" in terms of x and y.

g JUR I 2x x°
i - - - i -
y==_Tjr1_=_=I when y # 0 u
. 3 R 3 v -

Example 22: Show that the point (2, 4) lies on the curve x* + y® — 9xy = 0. Then
find the tangent and normal to the curve there (Figure 5).

Solution: The point (2, 4) lies on the curve because its coordinates satisfy the
equation given for the curve:

2°+4°-9(2)(4)=8+64-72=0

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for dy/dx:

X .
x+y =9y =10

desy o d v dg o d
dx o) + dx L dx (9xy) :ir{m
o .Efit ‘ fﬁ[ ,fﬁ[ - Jifferentiate both sides
T+ 3 e 9(:{ i m_) =0 with respect to x
v dy reat xy as a product and y
(3p° — Q.T}E + 3T -9 =0 l Iuih'_'_,,_ |'| o
(2 ~y ii‘l_"l-‘ =9 1 2
3y —_s.r}ﬁ— v — 3x

18



Figure 5

We then evaluate the derivative at (x, y) = (2, 4):

34)-2 8 4
=<

.
3y — x?

@l _ _

drfoy 3 - 3xlpy 44 -3(2) 10

The tangent at (2, 4) is the line through (2, 4) with slope 4/5:
4 3

y=4+ :E.['T — 2)
-
¥ =%.T +%.

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the
line through (2, 4) with slope — 5/4:

3.11 Parametric Equations
If x =1 (t) and y = g (t), then these equations are called parametric equations and
the variable t is called parameter.

dy

H a d du d -

From Chain Rule: X = 2.2 2 — du
dx du dx dx =

u

x=1(1),y=g()

L W/ 4he 15 derivative for parametric equation
dx dx/dt

19



For second derivative:

dy _ dyjdt  _ dy
dx?  dx/dt’ 7 = dx
,  day
d . . . .
Or == = 2299 the 2" derivative for parametric equation
dx dx/dt

Example 23: ify = 2t + 3, x = t /(t-1), find dy/dx

Solution:
dy dy/dt

dx ~ dx/dt
dy/dt = 6 t?
_ t-D-t@) _ -1
ddfdt = — === = =
6t?

dy/dx =—%

dy/dx = — 6t (t— 1)

Example 24: If a point traces the circle x* + y* = 25 and if dx/dt = 4 when the point
reaches (3, 4). Find dy/dt

Solution:
dy dy/dt
dx dx/dt

X +y?=25 2x+2y(dy/dx)=0  dy/dx =-xly
At point (3, 4) dy/dx=-3/4

-3/4 = dy_ﬁdt
4

dy/dt = - 3

Example 25: If x = cos 3t, y = sin 3t, find dy/dx, d°y/dx?
Solution:
dy dy/dt

dx dx/dt
dy/dt = 2 sin 3t (cos 3t).3 = 6 sin 3t cos 3t
dx/dt = - sin 3t .3 = -3 sin 3t

d 6 sin3t cos3t
Y - 232 P09% = .2 cos 3t = - 2X
dx -3 sin3t

20



d dy
d’y _ @t Gx
dx? dx/dt
d (d d .
¥ (ﬁ) = 2 (=2 cos 3t)= -2 (- sin 31).3
d’y _ —-2(—sin3t).3 _ >
dx2  -3sin3t
Or dy/dx = - 2x
d?y/dx? = -2
when dy/dx with respect to x.

21



CHAPTER 4
Applications of Derivatives

4.1 Related Rates

In this section we look at problems that ask for the rate at which some variable
changes when it is known how the rate of some other related variable (or perhaps
several variables) changes. The problem of finding a rate of change from other
known rates of change is called a related rates problem.

Example 1: Water runs into a conical tank at the rate of 9 ft/min. The tank stands
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water
level rising when the water is 6 ft deep?
Solution: Figure 1 shows a partially filled conical tank. The variables in the
problem are:

V = volume (ft®) of the water in the tank at time t (min)

x = radius (ft) of the surface of the water at time t

y = depth (ft) of the water in the tank at time t.

“1—‘! = 9 ft*/min

5 fit

\
|
(3
dt ) ‘
wheny = 6 ft :

|
|
|
|
|

Figure 1



We assume that V, x, and y are differentiable functions of t. The constants are the
dimensions of the tank. We are asked for dy/dt when

y =6 ft and dv/dt = 9 ft*/min,

The water forms a cone with volume
1 2
V= STX7Y.

This equation involves x as well as V and y. Because no information is given about
x and dx/dt at the time in question, we need to eliminate x. The similar triangles in
Figure 1 give us a way to express x in terms of y:

x Y

5
= —orx =
y 10 2

Therefore, find
1 vy, T
| o V=31 =137
To give the derivative
av _m 3 ,dy m dy
it 1227 a&T 1 @

Finally, use y = 6 and dV/dt = 9 to solve for dy/dt.

A dy
9= —(6)2—
4 41()dt
y
—=—=0.32
dt m

At the moment in question, the water level is rising at about 0.32 ft /min.

Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time.
Assume that all variables are differentiable functions of t.
2. Write down the numerical information (in terms of the symbols you have
chosen).
3. Write down what you are asked to find (usually a rate, expressed as a
derivative).



4. Write an equation that relates the variables. You may have to combine two
or more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

Example 2: A hot air balloon rising straight up from a level field is tracked by a
range finder 500 ft from the liftoff point. At the moment the range finder’s
elevation angle is /4, the angle is increasing at the rate of 0.14 rad/min. How fast
IS the balloon rising at that moment?
Solution We answer the question in six steps:
1. Draw a picture and name the variables and constants (Figure 2). The
variables in the picture are:
0 = the angle in radians the range finder makes with the ground.
y = the height in feet of the balloon.

We let t represent time in minutes and assume that 0 and y are differentiable
functions of t.

The one constant in the picture is the distance from the range finder to the
liftoff point (500 ft). There is no need to give it a special symbol.

Balloon @

&

dfl

i 0.14 rad/min p
when # = 7/4 ﬂ — 9

¥ dt ’

when # = w/4
™
Range \ 0 —
) #
finder 500 fi
Figure 2

2. Write down the additional numerical information.
do /dt = 0.14 rad/min  when 0 = /4



Write down what we are to find. We want dy/dt when 6 = n/4
Write an equation that relates the variables y and 6

B~ w

y/500 =tan # ory =500 tan ¢

5. Differentiate with respect to t using the Chain Rule. The result tells how
(which we want) is related to (which we know).

dy/dt = 500 (sec?d) d6/dt
6. Evaluate with 0 = /4 and d6/dt = 0.14 to find dy/dt.

dy/dt = 500 (vV2)%(0.14) = 140 [sec n/4 =V2]

At the moment in question, the balloon is rising at the rate of 140 ft/min.

Example 3: A police cruiser, approaching a right-angled intersection from the
north, is chasing a speeding car that has turned the corner and is now moving
straight east. When the cruiser is 0.6 mi north of the intersection and the car is 0.8
mi to the east, the police determine with radar that the distance between them and
the car is increasing at 20 mph. If the cruiser is moving at 60 mph at the instant of
measurement, what is the speed of the car?

Solution: We picture the car and cruiser in the coordinate plane, using the positive
X-axis as the eastbound highway and the positive y-axis as the southbound highway
(Figure 3).
We let t represent time and set

X = position of car at time t

y = position of cruiser at time t

s = distance between car and cruiser at time t .



Situation when
x=08y=056

We assume that x, y, and s are differentiable functions of t.
We want to find dx/dt when
x =0.8 mi, y = 0.6 mi, dy/dt = - 60 mph, ds/dt = 20 mph.
Note that dy/dt is negative because y is decreasing.

¥ T 7
5 = x* -1,_

} 7 -
(we could also use s = “x~ + y-), and obtain

- 8 dx | 4 dy

§— = Jx— !
“di dr ' di

E_i(.ﬁ_ o
dat s\ TV

S W - S
2 2\ dt  Codt )

Vxs 4 oy

Finally, we use x = 0.8, y = 0.6, dy/dt = - 60, ds/dt = 20, and solve for dx/dt.

20 = l— (ﬂ_sﬁ + {D.ﬁj{—ﬁt}])
V(0.8)2 + (0.6) dt

de _ 20V(0.8) + (0.6)* + (0.6)(60)
dr 0.8
At the moment in question, the car’s speed is 70 mph.

=70

Example 4: A water trough is 10 m long and a cross section has the shape of
isosceles trapezoid as shown in Figure 4. If the trough is being filled with water at



the rate of 0.2 m*/ min, how fast is the water level rising when the water is 30 cm
deep?

Solution:

V = volume of water

y = Q3120403 p 410 = (0.6 + 2 X) * 5h = 3h + 10xh

From similarity of triangles (Figure 4):

025 1

x 1
h 0.5 2
Xx=h/2
v=3%,10p%

dt dt
dh  dv/dt
dt 3+ 10h

dh__ 02 0.2

Ath=30cm=03m —= =22 _ 1 m/min
dt 3+10(0.3) 6 30

Example 5: A jet airliner is flying at a constant altitude of 12,000 ft above sea level
as it approaches a Pacific island. The aircraft comes within the direct line of sight
of a radar station located on the island, and the radar indicates the initial angle
between sea level and its line of sight to the aircraft is 30°. How fast (in miles per
hour) is the aircraft approaching the island when first detected by the radar
instrument if it is turning upward (counterclockwise) at the rate of in order to keep
the aircraft within its direct line of sight?

Solution: The aircraft A and radar station R are pictured in the coordinate plane,
using the positive x-axis as the horizontal distance at sea level from R to A, and the
positive y-axis as the vertical altitude above sea level. We let t represent time and
observe that y = 12000 is a constant. The general situation and line-of-sight angle
are depicted in Figure 5. We want to find dx/dt when 6 = /6 rad and d6/dt = 2/3
deg/sec.



12,000

Figure 5

From Figure 5, we see that
12,000/ x =tan @ or x = 12,000 cot 0

Using miles instead of feet for our distance units, the last equation translates to

12,000
X = cotb.
. o . . 5280
Differentiation with respect to t gives
dx 12,00 29 do
dt ~ 528 VA

When 6 = /6, sin’d = 1/4,50 csc’d = 4. Converting do/dt = 2/3 deg/sec to radians

per hour, we find

#_:2 (—) (3600) rad/hr [ 1 hr=3600 sec, 1 deg == /180 rad]

dt 180

Substitution into the equation for dx /dt then gives

dx _ (1299 3600 380

dt _< 528)( )< )(180)( )~
The negative sign appears because the distance x is decreasing, so the aircraft is
approaching the island at a speed of approximately 380 mi/hr when first detected
by the radar.

Example 6: Figure 6 (a) shows a rope running through a pulley at P and bearing a
weight W at one end. The other end is held 5 ft above the ground in the hand M of a
worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the



worker is walking rapidly away from the vertical line PW at the rate of 6 ft/sec.
How fast is the weight being raised when the worker’s hand is 21 ft away from
PW?

Solution: We let OM be the horizontal line of length x ft from a point O directly
below the pulley to the worker’s hand M at any instant of time (Figure 6). Let h be
the height of the weight W above O, and let z denote the length of rope from the
pulley P to the worker’s hand. We want to know dh/dt when x = 21 given that dx/dt

= 6.
N T
AN

A\ 201 é \
h |
0 \ M 6 ft/sec i \

. e 0 _ L
X | Jft ]

(a) (b)
Figure 6
Note that the height of P above O is 20 ft because O is 5 ft above the ground. We
assume the angle at O is a right angle.
At any instant of time t we have the following relationships (see Figure 5b):
20 —h +z =45 [Total length of rope is 45 ft]
20% + x* = 22 [Angle at O is a right angle]

If we solve for z = 25 + h in the first equation, and substitute into the second
equation, we have

—

et

202+ x*=(25+h)* ...... (1)
Differentiating both sides with respect to t gives

2 dx—z 25+ h dh

dt
and solving this last equation for dh/dt we find
dh x dx
E = (25+h) E ....... (2)

Since we know dx/dt, it remains only to find 25 + h at the instant when x = 21.
From Equation (1),
20% + 21% = (25 +h)®
So that
(25 +h )*=841 or 25 +h =29



Equation (2) now gives
dh/dt = (21/29)*6 ~ 4.3 ft/sec

as the rate at which the weight is being raised when x = 21 ft

4.2 Extreme Values of Functions

This section shows how to locate and identify extreme (maximum or minimum)
values of a function from its derivative. Once we can do this, we can solve a variety
of problems in which we find the optimal (best) way to do something in a given
situation. Finding maximum and minimum values is one of the most important
applications of the derivative.

Definitions: Let f be a function with domain D. Then f has an absolute maximum
value on D at a point ¢ if

f(x) < f{c¢) forallxinD
and an absolute minimum value on D at ¢ if

fx) > f(c) forall xinD.

Note: Functions with the same defining rule or formula can have different extrema
(maximum or minimum values), depending on the domain.

For example, on the closed interval [-7/2, ©/2] the function f (X) = cos x takes on an
absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice).
On the same interval, the function g(x) = sin x takes on a maximum value of 1 and
a minimum value of -1 (Figure 7).




The Extreme Value Theorem: If f is continuous on a closed interval [a, b], then f
attains both an absolute maximum value M and an absolute minimum value min [a,
b]. That is, there are numbers x; and x, in [a, b] with f (X)) =m, f (x,) = M and m <f
(x) <M for every other x in [a, b].

4.2.1 The Mean Value Theorem

Rolle’s Theorem Suppose that y = f(x) is continuous at every point of the closed
interval [a, b] and differentiable at every point of its interior (a, b). If f(a) = f(b),
then there is at least one number c in (a, b) at which f(c) = 0. (Figure 8)

v
.I.

fle)=0 i flicy) =0

¥ = fix) AT

.Frf-’ |
—
-

Figure 8

4.2.2 The Mean Value Theorem
Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable on the
interval’s interior (a, b) (Figure 9). Then there is at least one point ¢ in (a, b) at

which
fb) —f(a@) _
g 1 ©

. Tangent parallel to chord
. =

- .
_flb) — fla)

b—a

Figure 9
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Example 7: if f (x) = x°, 0 <x < 2. Find ¢ by using the mean value theorem.

Solution: f(x) = 2x, f(0) = 0, f(2) = 4
f(b)=f(@) 4-0

[ === 3-0772
f(c) =2c
2c=2
c=1
See Figure 10
na BIJ‘_ 4)

A(D, 0) I

Figure 10

Example 8: To illustrate the Mean Value Theorem with a specific function, let’s
consider f(x) =x*~x,a=0,b = 2.

Solution:

Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly
continuous on [0, 2] and differentiable on (0, 2).

Therefore, by the Mean Value Theorem, there is a number c in (0, 2) such that

f(2) - 1(0) =f(c) (2-0)

Now f (2) = 6, f(0) =0, and f(x) = 3x* — 1, so this equation becomes
6=(3c°-1)2=6c"-2

which gives ¢® = 4/3, that is, ¢ = F2//3. But ¢ must lie in (0, 2), so ¢ = 2/+/3.

Figure 11 illustrates this calculation: The tangent line at this value of c is parallel to
the secant line OB.

11
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4.2.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function it is useful to know where it
increases (rises from left to right) and where it decreases (falls from left to right)
over an interval.

4.2.4 Increasing Functions and Decreasing Functions

Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f(x) > 0 at each point x € (a, b), then f is increasing on [a, b].

If f(x) <0 at each point x € (a, b), then f is increasing on [a, b].

If f(x) = 0 at each point x € (a, b), then f is critical point (may be max. or min).

Example 9: Find the critical points of f(x) = x* — 12x — 5 and identify the intervals
on which f is increasing and on which f is decreasing.

Solution: The function f is everywhere continuous and differentiable. The first
derivative

f(x) = 3x* — 12 = 3(x* — 4)

=3(x+2)(x-2)

iszeroatx=-2and x = 2.
These critical points subdivide the domain of f to create nonoverlapping open
intervals:
(_ 0, -2)
(-2,2)
(2, )
on which f is either positive or negative.

12



We determine the sign of f by evaluating f at a convenient point in each subinterval.
The behavior of f is determined by then applying the above definition to each

subinterval.
The results are summarized in the following table, and the graph of f is given in

Figure 12.

. 1 o
Y y=x-12x -5
. 1

201 f
)
|
) J J y I|
™ 10+ |
\ b |
LA 1 LY 1 1 [ T
A “'._ S Interval —00 < x < -2 -2 <x<2 2<x< 00
f II.' T . o — 15 "]‘ J = 15
." SUEN f’ evaluated f(=3)=15 f {I}} 2 fl(3) =15
/ =\ / Sign of f* - +
| -0 I:;‘_w_rf“ Behavior of f increasing decreasing increasing
Figure 12

4.2.5 First Derivative Test for Local Extrema

Suppose that ¢ is a critical point of a continuous function f, and that f is
differentiable at every point in some interval containing ¢ except possibly at c
itself.

Moving across this interval from left to right,

1. if fchanges from negative to positive at c, then f has a local minimum at C;

2. if f changes from positive to negative at c, then f has a local maximum at C;

3. if fdoes not change sign at c (that is, is positive on both sides of ¢ or negative on
both sides), then f has no local extremum at C.

Absolute max
f" undefined

Local max
f'=0 ¥y =flx) \ No extremum

[ ’ | =0
Mo extremum f' o :
=0 . . [
e

fr=0Y

|
I I
| |
f =0 f =0, |
T [ 0\ I I \
/ : | ! ! \
=0 : : : Lo{a] min : : : Local min
T | L =0 | ! |
Absolute min : : : : : :
I I | I I I | X
a o cs cs o s 5
Figure 13

13



Example 10: Find the critical points of

f(X) — X1/3(X . 4) — X4/3 . 4X1/3

Identify the intervals on which f is increasing and decreasing. Find the function’s

local and absolute extreme values.

Solution: The function f is continuous at all X since it is the product of two

1/3

continuous functions, x™~and (x — 4). The first derivative

von . d foan a3 _ 4 s 4
ft.r]—d‘_(.r 4x )—3,1 3 X
4 o | 4x — 1)
- 3 .‘ (T ) - 3-‘-1:;3
Is zero at x = 1 and undefined at x = 0 (see Figure 14).
v
Vab
Illl'u
ll'll — y= _TLIIR[_T — 4
] I
1 x
-1 0
-1 Interval x =<0 0=x=<1 x =1
-2 IK Sign of f’ - — -
-3 Behavior of f decreasing decreasing increasing

Figure 14

4.2.6 Concavity and Curve Sketching

4.2.6a Concavity

Definition: The graph of a differentiable function y = f(x) is
(a) Concave up on an open interval I if f is increasing on I;

(b) Concave down on an open interval | if f is decreasing on I.

4.2.6b The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval 1.

14



1. If f> 0 on |, the graph of f over | is concave up.
2. If f< 0on I, the graph of f over | is concave down.

Examplell

(a) The curve (Figure 15) is concave down on (- o, ) where y = 6x < 0 and
concave up on (0, ) where y = 6x > 0.

1

¥ !

N
a0
P -
L,

,_:'.
g
i [ increases

. X
['decreases 2 0
ol
.5
A
/o

'E
JiF

Figure 15

(b) The curve y = x* (Figure 16) is concave up on (- o, o) because its second
derivative y = 2 is always positive.

-
\ & & |
= i
" a1 gas
\ & B oy )

\ - |

\\ b

=
o

L
WSy T f
W

Ik

Joy =0
| | k e --"/ |
-2 -1 0 1

al

Figure 16
Example 12: Determine the concavity of y = 3 + sin x on [0, 2x].

Solution The first derivative of y = 3 + sin x is y = cos x and the second derivative
ISy =-sinx

15



The graph of y = 3 + sin x is concave down on (0, ), where y = - sin X is negative.
It is concave up on (&, 27), where y = - sin X is positive (Figure 17).

Figure 17

4.2.6¢ Points of Inflection

A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.

Note: At a point of inflection (c, f(c)), either f (c) = 0 or f(c) fails to exist.
Example 13: The graph of f(x) = x** has a horizontal tangent at the origin because
f(x) = (5/3) x** = 0 when x = 0. However, the second derivative

d (5 2 10
= —[—x3| = — -1/3
f@) dx(3x ) 9 *
fails to exist at x = 0. Nevertheless, f{x) < 0 for x <0 and f{x) > 0 for x > 0, so the
second derivative changes sign at x = 0 and there is a point of inflection at the
origin. The graph is shown in Figure 18.

I 1 .«-":l
—
-2 17 0N, 1
| Point of
{ 7' inflection

=

b |-

| g ]

Figure 18
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Example 14: The curve y = x* has no inflection point at x = 0 (Figure 19). Even
though the second derivative y = 12 x? is zero there, it does not change sign.

4 : 4
I| 2 |
| b
%--.;H J

T I

-1 0 1

Figure 19

Example 15: The graph of y = x** has a point of inflection at the origin because

the second derivative is positive for x < 0 and negative for x > 0:

()< )2
y_dxzx T dx 3x B 9x

However, both y = x#® /3 and v fail to exist at x = 0, and there is a vertical tangent
there. See Figure 20.

Point of = 13
inflection rd :
e f
~.] .
of
Figure 20

4.2.7 Second Derivative Test for Local Extrema

Suppose f is continuous on an open interval that contains x = c.

1. 1ff(c) =0and f(c) < 0, then f has a local maximum at X = C.

2. 1ff(c) =0andf(c) > 0, then f has a local maximum at X = C.

3. Iff(c) =0and f (c) =0, then the test fails. The function f may have a local
maximum, a local minimum, or neither.

17



4.2.8 Curve Sketching

Procedure for Graphingy =f (x)

1. Identify the domain of f and any symmetries the curve may have.

2. Find the derivatives y and y.

3. Find the critical points of f, if any, and identify the function’s behavior at each
one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes that may exist.

7. Plot key points, such as the intercepts and the points found in Steps 3-5, and
sketch the curve together with any asymptotes that exist.

Example 16: Sketch the curve y = (x — 2)°+ 1
Solution:

1. Domain = (- o0, )
Symmetry: f (x) =y = x> — 6x* + 12x — 8
f(-X)=y=(-x)° - 6(-x)° +12(-x) - 8
f(X)=y=-x—6x"-12x—8
f(X)=y=-(+6x-12x + 8)

f(-x)£f(x)and f(x) #-f (X)
the function nor odd or even

2. y=3(x-2)*(1) +0 =3 (x—2)
y=0 3(x-2°=0 3(x-2)(x-2)=0 x=2
no maximum or minimum point at X = 2

y=6(x-2)=6x-12
y=0 6x-12=0 x=2
at x = 2 inflection point
atx=2 y=(2-20°+1=1
(2, 1) is inflection point

3. Intercepts
- Forx—intercept lety=0

18



0=(x—2)°%+1
By inspection,y =0ifx =1
(1, 0) is the x — intercept

- Fory—intercept, letx=0
y=(0-2°%+1=-8+1=-7
(0, -7) is the y - intercept

Example 17: sketch the curve y = ¥4 x* — x> + 4x + 2
Solution:
1. y=x*-3¢+4+0
y=0 x*-3*+4=0
ifx=-1 (-1°-3(-1)°+4=0
(x+1)(C—4x+4)=0
x+1)=0 x=-1
X —4x+4=0 (x-2)(x-2)=0 x=2

Atx=-1 local min. point

Y=Y+ 1-4+2
=-9%

(-1, -3/4) is min. point

2.y =3x" - 6X
0 3x¥-6x=0 3x(x—2)=0
=0 x=0

2=0 x=2

(0, 2) (2, 6) are inflection points

y
3
X

> 1

3. Intercepts:

- y-intercept: x =0
y=0-0+0+2=2
(0, 2) is y-intercept

19



Example 18: Sketch y = sin x + cos x from x = - n/4 to 3n/4
Solution:

y = C0S X — Sin X

y=0 sinx=cosx tanx=1 x=mn/4

atx =mn/4 y =sinn/4 + cos /4 =iz+iz= V2

\/_
(/4, \[2) is max. point

<|

2. y =-sin X — CoS X

—sinx—cosx=0 tanx=-1 Xx=—-a/4 andx=3n/4
— = i 1,1

At X=—7n/4 y=sin—n/4+ cos—n/4= 2+\/E 0

Atx=3r/4 y=10

4. Intercepts:
y=0 sinx+cosx=0
sinx=-cosx tanx=-1
X=-n/4 and x = 3n/4

y —intercept:x=0 y=0

4.2.9 Sketching of Rational Functions

In graphing of rational functions, we must early know the asymptotes.
Asymptotes: if the distance between the graph and some fixed line approaches zero
as the graph moves farther and farther from the origin, we say that this line is

asymptotes of the graph.
There are four types of asymptotes:
1. Horizontal asymptotes
2. Vertical asymptotes
3. Oblique asymptotes
4. Curved asymptotes

1. Horizontal asymptotes:

The liney =bis horlzontal asymptote of the graph y = f (x) if either: lim_,., f(x) =

b orlim,_,_, f(x) =

20



Example 19: Find the horizontal asymptotes fory = 1/ (x — 1)

Solution:
lim_,,1/(x—1)=1/oo-1 = /o0 =0
lim_, ., 1/(x—1) = 1/-00-1 = 1/-00 =0

y = 0 is horizontal asymptotes (x-axis)

V2xZ+1

Example 20: Find the horizontal asymptotes for the function y = -

Solution:

2x2 1

1 V2xZ+1 _ lim 232 _ V240 _ 2

x—00 3X=5 X 37"_)5_6 3-0 3
1

lim Y22 g NaxZv1l | gVt
Xm0 3X=5 x>0 2(3x=5) x—-o (3x-5)

) x, x =0
Since Vx2 = f(x ={ T

f() —x, x <0

And we have x — - ©

The horizontal asymptotes are y = g andy = _Tﬁ

2. Vertical asymptotes:
The line x = a is vertical asymptote of the graph y = f(x) if either:

lim,_.," f{x) =+ o0 orlim_, f{x) =+
e To find vertical asymptotes, find the values of x that make the denominator

equal zero and check that the limit of a function goes to (oo or -o0) as X
approaches (a*or a")

21



Example 21: Find the vertical asymptotes for the function y = ﬁ
Solution:

Xx-1=0 x=1

. 1

lim,_,;+ ==

lim L -1-
X1 17 0

x = 1 is vertical asymptote.

2 —
Example 22: Find the vertical asymptotes for the function y = xx:ff
Solution:
X*-4=0 x*=4 x=%2
. x*+x-6 0
lim,_,+ 2 ~ & # 00 Or - 00
. x*+x-6 0
llquz—ﬁ = B;EOOOI'-OO

X = 2 is not a vertical asymptote.

x2+x—6 -4
= —=w
x2—4 0

X = - 2 is the vertical asymptote.

limx_>_2+

3. Oblique (or slant) asymptotes:
When lim,_,.. [f(X) — (mx + b)] = 0, then the line y = mx + b is oblique asymptotes
for the function f(x).
e To find obligue asymptotes, divide the numerator over the denominator (by
long division), the result represents the oblique asymptotes.
e |f the rational function has degree of numerators is one greater than the
degree of denominator, the graph has an oblique asymptotes.

x2-3

Example 23: Find the oblique asymptotes of y = ——

Solution: degree of numerator — degree of denominator=2-1=1
Use long division
y=24+1+—
2 _2x—4 .
y =Xx/2 + 1 is the oblique asymptote.
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Note: A function may have oblique asymptote but is not rational function, for
example y = v4x? + 9 has two oblique asymptotes y = 2x and y = - 2x

4. Curved asymptotes
If the degree of numerator is more than one greater than the degree of denominator,
the asymptote becomes curved.

e To find curved asymptotes, use only long division.

4
Example 24: Find the curved asymptotes of the function y = = :1
X
Solution:
2 1
y=x+3
y = X?is the curved asymptote.
2
Example 25: Sketch the graph of f(x) = (’:2
Solution
1. The domain of f is (- oo, o) and there are no symmetries about either axis or the
origin.
2.Findfand f
_(x+1)?

X — intercept at x = -1,
y —interceptat (y=1)atx=0

(1+x2).2(x+1) — (x +1)%.2x
(1+ x2)?

f(x) =

_2(1-x%)
=Gy

Critical points: x=-1,x =1

23



(1+4+x2)2.2(-2x) —2(1 — xH)[2(1 + x?).2x]
(1+x2)*

fx) =

_ Ax(x? —3)
“ Gy

3. Behavior at critical points. The critical points occur only at x = = 1 where f(x) =
0 (Step 2) since f exists everywhere over the domain of f. Atx=-1,f(-1)=1>0
yielding a relative minimum by the Second Derivative Test. Atx =1,f (1) =-1<0
yielding a relative maximum by the Second Derivative test.

4. Increasing and decreasing. We see that on the interval (- oo, -1) the derivative
f(x) < 0, and the curve is decreasing. On the interval (-1, 1), f{x) > 0 and the curve
IS increasing; it is decreasing on (1, «0) where f{x) < 0 again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is
always positive. The second derivative f is zero when x = —/3 , 0 and /3. The
second derivative changes sign at each of these points: negative on (- o0,—/3),
positive on (v/3, 0), negative on (0, v/3), and positive again on (v/3, o). Thus each
point is a point of inflection. The curve is concave down on the interval (- co,—/3)

concave up on (—/3, 0), concave down on (0,4/3) and concave up again on (v/3,
).

6. Asymptotes. Expanding the numerator of f(Xx) and then dividing both numerator
and denominator by x° gives

(x+1)> x*+2x+1
1+ xz2 B ) 1+ x?
1+ (3) + @
1
(2)+1
We see that f{x)— 1" as x — oo and that f{x)— 1 as x — - c. Thus, the liney =1 is
a horizontal asymptote.

fx) =
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Since f decreases on (- oo, -1) and then increases on (-1, 1) we know that f(-
1) = 0 is a local minimum. Although f decreases on (1, o) it never crosses the
horizontal asymptote y = 1 on that interval (it approaches the asymptote from
above). So the graph never becomes negative, and f(-1) = 0 is an absolute minimum
as well. Likewise, f(1) = 2 is an absolute maximum because the graph never crosses
the asymptote y = 1 on the interval (- oo, - 1) approaching it from below. Therefore,
there are no vertical asymptotes (the range of fis (0 <y <2).

7. The graph of f is sketched in Figure. Notice how the graph is concave down as it

approaches the horizontal asymptote y = 1 as x — - o and concave up in its
approachtoy=1asx — o

¥ Point of inflection
. -U

where x = V3
(1, 2)
2 _-""""'m_
| 'I ¥ -__I_'
f Horizontal
o _ /| asymptote
. WA
. o :
Point of inﬂ-;.‘t'iiﬂl‘l
where x V3
. x*+4
Example 26: Sketch the graph of f(x) = —

Solution:

1. The domain of f is all nonzero real numbers. There are no intercepts because
neither X nor f(x) can be zero. Since f(-x) = - f(x), we note that f is an odd function,
so the graph of f is symmetric about the origin.

2. We calculate the derivatives of the function, but first rewrite it in order to
simplify our computations:

()_x2+4_x+2
f) = 2x 2 x
_1 2_x2—4
f(x)_Z x2  2x2
4
f(x)=F
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3. The critical points occur at x = £2 where f (x) = 0. Since f (-2) <0 and f (2) > 0,
we see from the Second Derivative Test that a relative maximum occurs at x = -2
with f (-2) = -2, and a relative minimum occurs at x = 2 with f(2) = 2.

4. On the interval (- oo, -2) the derivative f is positive because x* — 4 > 0 so the
graph is increasing; on the interval (-2, 0) the derivative is negative and the graph is
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing
on (2, o).

5. There are no points of inflection because f(x) < 0 whenever x < 0, f{x) > 0
whenever x > 0and f exists everywhere and is never zero throughout the domain of
f. The graph is concave down on the interval (- oo, -2) and concave up on the
interval (0, o).

6. From the rewritten formula for f(X), we see that

. X 2 . X 2
llmx_)0+ (E + ;) = 400 and llmx_)o— (E + ;) = —00,

so the y-axis is a vertical asymptote. Also, as x—oo or as x—- oo the graph of f(x)
approaches the line y = x/2. Thus is an oblique asymptote.

7. The graph of f is sketched in Figure below
¥ -

4\

[

I

W
L |
(S]]

Example 27: Use symmetry, first derivative, second derivative, and asymptotes to
x2

x2-1

graph the function y =
Solution:

1. Symmetry:

(02 _

fex) = = A7=T
The function is even function (symmetric about y-axis)
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2. First derivative:

y=1+

x2—1
—0 2x
SRR CCR I
-2x  _ -1
T (2-1)2 2x((x2_1)2)

_ -1
y=0 (x2-1)2 #0

2x=0 x=0

x’-1=0 x*=1 x=+1 [atthesevaluesy is not defined]

1

atx=0 y-= 1+(0)2_1:1—1:0
(0, 0) is maximum point.
3. Second derivative:

-2 _ (P-1)?(=2)-(-20)[2(x*~ 1) (2x)]
Y S VT (-1

_ —2(x2-1)%48x%(x2-1) _ (x?-1)[-2(x2-1)+8x2]
YT ey T e

_ 6x%+2 _ 2 1
y - (x2_1)3 - (6x + 2)((X2—1)3)

_ 1
y=0 R #0,

6x2+2=0 xX#-1/3 x=# /—§

The values of x that make y not defined:
X¥*-1=0 x*=1 x==#1
X =—1, x =1 are out of domain

y#0
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No inflection points

4. Asymptotes:
Horizontal asymptotes:

1
x2-1

limy o, 1+——=1+1/0=1+0=1

1
x%-1

=1+1-00=1+0=1

lim,,_, 1+

y = 1 is horizontal asymptote.

Vertical asymptotes:
X¥-1=0 x*=1 x=#%1
1

x2-1

lim,_+1+ =1l+oo=00

limx_>_1+1+x2_1:1—OO=OO

x =1 and x = - 1 are vertical asymptotes.

Example 28: use first derivative, second derivative and the asymptotes to graph

_ x?%-4

x—1
Solution:

1. Asymptotes:
—_ 3
y=x+l-7
y = x + 1 is oblique asymptote.
- Horizontal asymptote:

. x%2-4 0 , . .
lim, o — == ( indeterminate form)

No horizontal asymptote

- Vertical asymptote:
Xx-1=0 Xx=1
lime,," x+1-3/(x-1) =- 0
x =1 is vertical asymptote
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2. First derivative:
y=1+0+—

(x-1)2
_ 3
=G +1
= 3 = — — 2 = - 2 — =
y=20 s 1 (x-1) 3 X*=2x+4=0
—b + Vb?% — 4ac
X =
2a
x = 5D (2‘(?)2‘4(1)(4) = 2+“2_12 (not defined)
y#0  nomax. or min. point
The value of x that makes y not defined isx -1 =0 x=1

3. Second derivative:
RN
[(x — 1)? 0] — [3 * 2(x — 1)(1)]

(x —1)*
—6(x—1) —6

R TN CREDE
y=0 x=1 (y not defined)
x =1 out of domain no inflection point

y=0+

4.3 L’Hopital’s Rule

4.3.1 Indeterminate Forms 0/0
Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval |
containing a, and that g(x) #0 on | if X # a.
Then
: f(x) _ . f(x)
hmx_,aﬁ - lmx_)aﬁ

assuming that the limit on the right side of this equation exists.
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Example 29: The following limits involve 0/0 indeterminate forms, so we apply
I’Hopital’s Rule. In some cases, it must be applied repeatedly.

Solution:
(a) lim 3x —Ysm_\' _ i S—cosx _ 3 — cosx — 5
x—=0 - x—=0 1 1 =0
1
RV B Sl | 2N +x 1
I ~ e lim=——% ==
(b) JE}] X .vu]'ﬂ] | 2
o VI+x—1-—x/2 o
(c) lim 5 =
x—0 x- !
(2 + X - 12
— llm = At —; differentiate again
x—=0 LX
—(1/4)(1 + x)77 ]
B .'u;l—rfi[l 2 - _E Mot —: It 15 found.
. X — sinx 0
Iy lim ———— —
{EJ .1'233 .1'3 o
— i | — cosx cen
x—=0 Ix? I
— Im sIn X 0
x—0 bx 0
= ].llf'lf'i{:GSI=l t— It 15
Using L’Hopital’s Rule
To find
. fX)
lim —=
x~a g(x)

by I’Hopital’s Rule, continue to differentiate f and g, so long as we still get the
form 0/0 at x = a. But as soon as one or the other of these derivatives is different
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from zero at x = a, we stop differentiating. L’Hopital’s Rule does not apply when
either the numerator or denominator has a finite nonzero limit.

Example 30: Evaluate the following limits:

1—cosx x%—4x+3
a) lim,_, o b) lim,_,; —
Solution:
a) lim 1—cosx — 9
X0 54 x2 0
sinx 0

= lim N —

x-0 1+2x 1

Note: now if we want to find hmx_)0 by applying I’Hopital’s Rule:
cosx 1

SAm——=7

which is not the correct limit. L’Hopital’s Rule can only be applied to limits that
give indeterminate forms, and 0/1 is not an indeterminate form.

x2—4x+3

b) lim,_,, —

Note: Sometimes when we try to evaluate a limit as x — a by substituting x = a we
get an indeterminant form like oo/c0, 0.0, or o - oo, instead of 0/0. We will consider
the following form:

4.3.2 Indeterminate Forms o/«

It is proved that I’Hopital’s Rule applies to the indeterminate form oo/oo as well as
to 0/0 as shown in following examples:

secx

Example 31: Find the limits of lim,_, =

31



Solution:

Secx oo

im ——=—

x-n/21 4+ tanx o
secxtanx

x-n/2 Sec4Xx

= lim sinx =1
x—-T1/2
2x343x%+1

Example 32: Find lim,._,, 212

Solution:
. 2x° +3x* +1
xl—r><r>10 x%+ 4 B

(00}
o
_ 6x?% +6x
= lim ————
x>0 2X

- 2x(3x+3)
= lim ————
xX—00 2x

= lim3x+3 =

X—00

4.3.3 Indeterminate Forms «.0, © — «

Sometimes these forms can be handled by using algebra to convert them to a 0/0 or
00/00

Example 33: Find the limits of lim,_, (x sin %)

Solution:

lim (x sin—) = 0. 00

X— 0o X

Let h = 1/x:

li _ — i o n) = 1 sinh_1
xgg(x sm;) =lim (E sin ) = Jlim —— =
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Example 34: Find the limit of this o - oo form:

lim( 1 1)
im(—— ——

_ x—0 "SInx
Solution:

. 1 .1 .1
lim(———-) = lim———1lim—= o0 — o0
x-0°Sinx X x-0Sinx x-0X

1 X — Sinx
lim(——— —) = lim———
x—0 SInx x>0 XxSinx
_ 1 —cosx
= lim

x-0 SIinx + xcosx

Still 0/0
Use L’Hopital’s Rule again:

sinx 0
= lim ===0
x=0 2co0sx — xsinx 2

4.4 Applied Optimization

In this section we use derivatives to solve a variety of optimization problems in
business, mathematics, physics, and economics.

Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given?
What is the unknown quantity to be optimized?
2. Draw a picture. Label any part that may be important to the problem.
3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.
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4. Write an equation for the unknown quantity. If you can, express the unknown
as a function of a single variable or in two equations in two unknowns. This
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and
second derivatives to identify and classify the function’s critical points.

Example 35: An open-top box is to be made by cutting small congruent squares
from the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How
large should the squares cut from the corners be to make the box hold as much as
possible?

Solution:
We start with a picture (Figure 23).

— — — ——— —,—

L ﬁ

£

I . d

| |.1 R

L S i 12

I ) T i 7’ir.?x _(r /

Figure 23

;;.-,w

/

In the figure, the corner squares are x in. on a side. The volume of the box is a
function of this variable:

V (X) = x(12 — 2x)* = 144x — 48 X* + 4x°

Since the sides of the sheet of tin are only 12 in. long, x < 6 and the domain of V is
the interval 0 <x <6.
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A graph of V (Figure 24) suggests a minimum value of 0 at x =0 and x = 6 and a
maximum near x = 2.To learn more, we examine the first derivative of V with

respect to x:

dV/dx = 144 — 96x +12x* = 12(12 — 8x +x°) = 12(2 — X)(6 — X)

Volume

. {
min |/

Maximum
]

0

NOT TO SCALE

Figure 24

Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s
domain and makes the critical-point list. The values of V at this one critical point

and two endpoints are:

Critical-point value: V (2) = 128
Endpoint values: V (0) =0, V (6) = 0.

The maximum volume is 128 in*. The cutout squares should be 2 in. on a side.

Example 36: You have been asked to design a one-liter can shaped like a right
circular cylinder (Figure 25). What dimensions will use the least material?

Solution:
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Figure 25

Volume of can: If r and h are measured in centimeters, then the volume of the can
in cubic centimeters is

nr’h = 1000 [1 liter = 1000 cm®]
Surface area of can:
A= 2nr’ + 2arh
circular cylindrical
end wall

How can we interpret the phrase “least material”? For a first approximation we can
ignore the thickness of the material and the waste in manufacturing. Then we ask
for dimensions r and h that make the total surface area as small as possible while
satisfying the constraint zr*h = 1000.

To express the surface area as a function of one variable, we solve for one of
the variables in =r’h = 1000 and substitute that expression into the surface area
formula. Solving for h is easier:

1000
h = >
r

Thus,
A= 2nr’+ 2nrh
= 2tr? + 2nr (10020
r
2000

_ (2, (2000
—27tr+(r

)
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Our goal is to find a value of r > 0 that minimizes the value of A. Figure 26
suggests that such a value exists.

A

Tall and
|| thin can
| Short and
\ wide can
\ A=2a24 2000 g
r s
Tall and thin \, ) -
S min .
I -
|
! > r
] :?‘TF]T
AT
Short and wide
Figure 26

Notice from the graph that for small r (a tall, thin cylindrical container), the term
2000/r dominates and A is large. For large r (a short, wide cylindrical container),
the term 2zr? dominates and A again is large.

Since A is differentiable on r > 0, an interval with no endpoints, it can have a
minimum value only where its first derivative is zero.

dA _ 4 2000
dr mr r22
0 = 4xnr — 2000/r
47r® = 2000
31500
r= |— =~ 5.42
T
The second derivative
d?A i+ 4000
dr?2 r r3

IS positive throughout the domain of A. The graph is therefore everywhere concave
up and the value of A at r = 3/500/x is an absolute minimum.
The corresponding value of h (after a little algebra) is
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1000 _3[500
h=—p=2|—=2r
nr T

The one-liter can that uses the least material has height equal to twice the radius,
here with r = 5.42 cm and h = 10.84 cm.

Example 37: Find the area of the largest rectangle with lower base on the x-axis
and upper vertices on the parabolay = 12 — X%

Solution:

A=2x (12 - %%

A= 24x — 2x° 0<x<2v3

dA/dx = 24 — 6x?

At maximum or minimum points, dA/dx =0
24-6x"=0

x° = 2416 =4

X=20rx=-2 [x=-2isneglected]

d?Aldx? = — 12x
Atx=2 d?A/dx® = -12*2 = - 24 = -ve
X =2 IS maximum point

Check bound:

Atx=0 A=0
Atx=2v/3 A=0

Atx=2 Absolute max.

A=2(2) [12 - (2)°] = 32 unit

Example 38: The height of an object moving vertically is given by S = - 16t* + 96t
+112 when s in feet and t in seconds. Find:

a. The velocity whent=10

b. Its maximum height

c. Itsvelocity whens =0

Solution:
a. Velocity = ds/dt = - 32t + 96
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Att=0  v=-32(0)+ 96 =96 ft/sec

b. At maximum height, velocity v=0
-32t+96=0
t=96/32 =3 sec
Smax = - 16 (3)° + 96 (3) + 112 = 256 ft

c. AtS=0 - 16t* + 96t +112 =0 -t +6t+7=0
t?-6t—7=0
t-7)(t+1)=0
t=7
t = -1 (neglected)
v=-32t+96 =-32(7) + 96 = - 128 ft/sec

Example 39: what is the smallest perimeter possible for a rectangle of area equal to
16 cm®.

Solution:

P=2(x+y)

A =xy

16 = xy y = 16/x

P =2(x + 16/x) = 2x + 32/x 0<x<ow
dp 32 2x%-32

dx x2  x2

dp _ 0 2x2-32

— =0 2x°~32=0 x* =16 X=+4
X=4 [x=-4was neglect]
d*p 0 —32(2x) _ 64

dx2 x*  x3
d?p

Atx=4 — = 4ve
dx?

X =4 local min. point

Bound check:
Atx=0 P
At X=0o0 P

o0
o0

X =4 give absolute min.,, y=16/4=4
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P =2(4 + 4) = 16 cm (rectangle is square)

Example 40: The wall shown is 8ft height and stands 27 ft from the building. What
is the length of the shortest straight beam that will reach to the side of building
from the ground outside the wall?

Solution:

Building

Figure 27

Let L = length of the beam
=y? + (x + 27)°
From similar triangle:
y _ 8 _ _ 8(27+x)
27+x X yx-8(27+x) - x
8(27 +x
Lz = [%]2 + (X + 27)2
L= [EE22 4 4272 0<x<w

For min. L: dL/dx =0
aL _ E[(8(27+x))2 b+ 27) ] x [2 (8(27+x)) 8x— 2x16 8x+ 2(x + 27) * 1]

dx X

216 + 8x 216
L 2073 (x )+ @ +27)]

dx 2[(8(27x+ X)

) T (x +27)2]1/2
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—46656 — 1728x  (x + 27)
3 + 1
abt X

dx 2[(@)2 + (x +27)2]1/2

—46656 — 1728x + x* + 27x3
3

)2 + (x + 27)2] V2

dx 2[<8(27 + x)

X

dL B

dx

—46656 — 1728x 4+ x* 4+ 27x3 _ 0
x3 B

x* 4+ 27x3 — 1728x — 46656 = 0

By trail an error X =12 ft
Atx =12 local min,

Bound check:

Atx =0 L=w

AtX = L=

X =12 ft give absolute minimum of L

Example 41: A window is in the form of a rectangle surmounted by a semicircle.
The rectangle is of clear glass, whereas the semicircle is of tinted glass that
transmits only half as much light per unit area as clear glass does. The total
perimeter is fixed. Find the proportions of the window that will admit the most
light. Neglect the thickness of the frame.

Solution:

From the diagram:
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= wm - — = =

r

Zr

The perimeter is: P =2r + 2h + ar
where,
r = radius of semicircle
h = the height of the triangle
The amount of light transmitted proportional to:
A=2rh+ (1/4)x ¥
A=r(P-2r—ar) +(1/4)x
=rP-2r" - 3/4)r+*
dA/dr=P—-4r-3/2)xr

P—4r-(3/2)mr=20
r=2P /(8 + 3n)
2h=P-4P /(8 + 3n) - 2P /(8 + 3x)
= (4 +x)P /(8 + 3m)
Therefore, 2r/h = 8/(4 + =) gives the proportions that admit the most light since
d’A/dr® = -4 —3n/2 <0
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CHAPTER 5
INTEGRATION

- Integration is the process of calculating an integral.

- Integral calculus is the mathematics we use to find length, area .... etc.

- By integration we get (general solution) of the problem and by applying
(boundary conditions) we get (particular solution). This is for indefinite
integral.

5.1 Antiderivatives:

The antiderivative is the function when the original function obtained from its
derivative. It is defined by F

For example if f(x) = cos x, F(x) = sin x
There are two types of integration:
1. Definite integral [ f (x)dx
- | : Integral sign ( it is elongated S chosen by Leibniz from the letter S in
German word summation).

- Give numerical values
- No constant of integrals.

2. Indefinite integral [ f(x)dx
- General solution (constant of integration C)
- Particular solution (applying boundary condition)

5.2 Definite integral:

The area problem:

If we have the function y = f(x) = x*, and want to find the area under the graph from

x=0tox=1:

e The area is not regular; it is not easy to find it.
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e \We can estimate the area by dividing it to small strips.
e |f the area is divided into four strips of rectangular shape:

Base = ¥4 unit
Height = the right edge of the rectangle.
The area equal to
R4 = Y, (1/4)* + Ya (1/2)* + Y4 (3/4)* + Y4 (1)?
= 15/32 = 0.46875
e |f the height is equal to the left edge of the rectangle:
L4 =Y, (0)° + Ya (1/4)? + Ya (1/2)? + Ya (3/4)?
=7/32 =0.21875
The exact solution is greater than L4
0.21875 < A (exact area) < 0.46875

e If we repeat this procedure with a larger number of rectangular strips, the
values of R and L closed to exact area A = 1/3 = 0.33333333 obtained from

integration.
For Riggo = 0.3338335, Ljggo = 0.3328335

Now: if we have the function y = f(x), and we want to find the exact area under the
graph of this function from x = a to x = b, divide it into n rectangles:

Take a typical rectangle (k™ rectangle):

Area of k" rectangle = f (C,) . AX;

The sum of areas of rectangles (S) is:

S = Xk=1f(Cy)- AXy

The Greek capital letter ) (sigma) is used to indicate sums.

The exact area (A) = lim,, o Xp=q1 f(Cr). AXy



The definite integral of f(x) fromx=atox="b s

b n
f(x)dx = lim f(Cr).AX
L n_m; k k

Where;

a: Lower limit of integration

b: Upper limit of integration

dx: Differential (index integration).
Notes:

1. All continuous functions are integrable.
2. If f(x) is negative, the area becomes below the x-axis.

5.3 The mean value theorem for definite integral:

If f(x) is continuous on the closed interval [a, b], then, at some point ¢ in the
interval [a, b]

1 b
fle)=7— f FG)dx

For example: the average value of y = x* fromx =0tox = 1 is Tlo (%) = %

Rules for definite integral:

. faaf(x)dx =0

y F@dx = = [ fx)dx

. f; Kf(x)dx = Kf‘ff(x)dx

G £ gColdx = [ fdx £ [ g(x)dx
S FGOdx =[] FOOdx + [ f(x)dx

. fbcf(x)dx = f;f(x)dx — f;f(x)dx

o o AW NP



7. 1f g 2ft) [, g@dx = [ f(x)dx
8. IFf(x)>0 [ f(x)dx >0

5.4 The fundamental theorems of integral calculus:

5.4.1 The first fundamental theorem:

If f is continuous on [a, b], then the function F(x) =f(f f(t)dt has a derivative at
every point on [a, b] and

dF_ d fx (©)dt =
Example 1: Find dy/dx fory =[_cott dt

Solution: dy/dx == [* cott dt = cosx
dx “'—T

Example 2: Find dy/dx for y = flxz cost dt

2
. u
Solution: Let u = x? y=J costdt = [ cost dt
d d d d
DD - cosu. 22 =cos X2 2X = 2X c0S X2
dx du dx dx

5.4.2 The second fundamental theorem (Integral evaluate theorem):

If f is continuous at every point on [a, b] and F is any antiderivative of f on [a, b]
then:

b
[ feax = Fo) - F@

Example 3: calculate [ cos x dx

foncosxdx = [sinx]§ =sinm—sin0=0-0=0



5.5 Integration Formulas:

b

b n+1
1. [ u™du =z
a n+llg
b
2. fa du = ul?
3. [P(du+dv) = [Pdu+ [ dv
" Jda a a
b .
4, fa sinudu = —cosul?
b .
5. J, cosudu = sinulg
b
6. [ sec’udu =tanul]
b
7. fa secutanu du = secul|?
b
8. fa csc?udu = —cotul?
b
Q. fa cscucotudu = —cscu|?

5.6 Area Under Curve

Example 4: Find the area under the curve y = x + 2 from x =1 to x = 4.

Solution: A = [dA = ffydx = ff(x + 2)dx

=16 — 5/2 = 13.5 units

Example 5: Find the area under the curve y = cos x from x = 0 to x = n/2.

Solution: A = fon/z ydx = fon/z cos x dx = sin x|/ = sin /2 — sin 0 = 1 units

Example 6: Find the area bounded by the curve y = f(x) =v2x + 1 and the lines x
=0, X =4 and the x-axis.



Solution: A = f04(2x + 1)V2dx

Nlr—\

2ex+ 12| =132 - ()
3 0 3
= 1/3 (26) = 26/3 units

Example 7: Find the area of the region between the x-axis and the curve y = x* —
4. -2<x<2

Solution:

In this case, the graph has +ve and —ve values of area. We must divided the interval
[-2, 2] into [-2, 0] and [0, 2] and take the absolute value of results.

y=0 xX—4x=0 X(¢—4)=0 X(x—2) (x+2)=0
X=0, x=2, x=-2

0 x4 0
Ay = [0, —4x) dx=|T -2 =[0]-[4-8]=4

4 2
Ay = 2% - 4x) dx:[x:—ZxZ]o =[4-8]-[0]=-4
= |Agl+ |A]
= |4 +1]- 4]
=4 + 4 =8 units

2 sin/x

ﬁdx

Example 8: Evaluate f

Solution:

Letu=+/x

1
du = ——dx

2Vx



UL=Vr2=n, L.Lz\E:

NIE!

T T
f sinu.2du = 2f sinu.du
/2 /2
= 2[cosu]z,, = -2 [cos m — cos m/2]
=-2(-1-0)=2
5.7 Numerical Integration:

The numerical integration methods are approximate rules for evaluating definite
integral. It used when we cannot compute the value of an integral exactly and
specially useful for approximately integral of functions that are available only in
graphical or tabular form.

In the present study, we will deal with three methods:

1. Trapezoidal method
2. Mid point method
3. Simpson’s rule method.

5.7.1 Trapezoidal Method:

If we have the function y = f(x) and we want to estimate ff f(x)dx

If we have n divisions

h =

n

A = total area under the curve

y=1f(x) fromx=atox=Db



A= () s () (22 ()

A= h[—+—+&+&+32+3£+_+ Yn-1 , Yn-1 , ¥n
2 2 2 2 2 T 2 2 2

A= h[_+Y1+YZ+Y3+ ------ Yn1t =

A= %[yo+2y1 + 2y, +o... + 2Yn-1t Yl
Where,

Yo — yn . values of the function f(x) at X, — X,
Yo=1(a) , yn = f(b)

h = width of Trapezoid = (b —a)/n

n = number of divisions

Example 9: use Trapezoidal rule to approximate f16(x3 + 3)dx; n =6, then
compare the result with the exact value and find the percentage of error.

Solution:

h_6—1_5
6 6

h
A= Z[yot2ys + 2y, + 2y3+2y, + 2y5 + yel

X y=f(x)=x>+3
=a=1 fa)=y0=4
=1+ (5/6) =11/6 y; = 9.16
= 16/6 Y, = 21.96

X3 = 21/6 Y3 = 45.87




X4 = 26/6 ys = 84.37

Xs = 31/6 ys = 140.92

X = 36/6 = 6 Yo = 219

A= % [4 + 2(9.16) + 2(21.96) + 2(45.87) + 2(84.37) + 2(140.92) +219]
=344.82
The exact value = | 16(x3 + 3)dx

_ ! 6 —
= [ +3x]¢ = 338.75

344.82—-338.75
338.75

The percentage of error = .100=1.8%

Note: the error estimated from Trapezoidal method = E+

b
E;=T —j f(x)dx
a
T — approximated value of integral by Trapezoids

b—a
|Er| SThZD

D- Upper bound for the value of |f(x)| on [a, b]

Example 10: Find the upper bound error estimate from using the Trapezoidal
method with n = 10 for the integral folx sinx

Solution:
a=0,b=1,n=10,h=(1-0)/10=1/10
f(x) = x sinx

f(x) = x cos x + sinx

f(x) = x (-sinx) + c0s X + C0OS X = 2 COSX — X Sin X



D=2

b—a
|ET| SThZD

Bl () @

1
Erl < —

1
60000

1/ 1)\2
Ifn=0 IETISE(E) 2)  |Eg| <

5.7.2 Mid-Point Method

In this method, the area under the curve is divided into a number of rectangles. The
curve intersects each rectangle at the mid-point of the top side.

AzM=Zf(ck).h
i=1

n = number of rectangles
Cy : X- coordinate for the midpoint.

The error estimate for midpoint method is:

b—a
|Ey| SThZD

Example 11: Estimate ff x2dx with n = 4 by Midpoint method.

Solution:a=1,b=2,n=4
h=(2-1)/4 =Y

Cx f(Cy)
Cl=1+(1/4)2=9/8 f(C1) = (9/8)° = 81/64
C2=9/8+%=11/8 f(C2) = (11/8)* = 121/64
C3=11/8 + ¥4 =13/8 f(C3) = 169/64
C4=13/8 + Y4 = 15/8 f(C4) = 225/64

10




A~V [81/64 + 121/64 + 169/64 + 225/64] = 149/64 = 2.328125
f(x)=x4f(x) =2x, f(x)=2,D=2

B2 @

1
Eyl <—=

|Ey| < 0.005208
5.7.3 Simpson’s Rule

Simpson’s rule is based on approximately curves with parabolas instead of line
segments. Each three points are connected with a parabola.

The general equation of parabola is y = Ax* +Bx + C

da:ydx:f_hhydx
h

Ar = f (Ax? + Bx + C)dx
-h

Ax3 Bx?

— - h
AT—[ 3 + 2 +Cx]_h
A —Ah3+Bh2+Ch _Ah3+Bh2 Ch
T3 T (= 2 )
Ah3
= +2Ch

3

Ar = §(2Ah3 +6Ch) = §(2Ah2 + 6C) = Exact Area

Since the curve passes through the points (-h, yo), (0, y1), (h, y») then:
Yo=Ah’-Bh+C....... (1)

11



Yo—y1 = Ah®* — Bh
Y,—y; = Ah*+ Bh

h
Yo—Yi+ Y2 — Y1 = 2AN AT:;[)’o+)’2_23’1+6C]
h h

AT:;[J’O +y, — 2y, + 6(] =§[3’0+4)’1+)’2]
Now: Arl = g[y0 + 4y, + y,]

h
Ar2 = 3 [v2 + 4y3 + V4]
Tmmm%:Aﬂ+AQ=%ﬂm+4%ﬂﬂ@+y[+ﬂg+ﬂ]

h
= g[)’O + 4y, + 2y, + 4y; + yal
h
A = S = §(y0 + 4—y1 + 2y2 + 4‘y3 + -l +2yn_2 + 4y7’l—1 + yn)

Example 12: Estimate flz x%dx with n = 4 by Simpson’s rule.
Solution:a=1,b=2,n=4

h=(Q2-1)4=Y

h
A=S=§(y0+4y1+2y2+4y3 + Va)

4 y

Xo=1 Yo = 1

X, = 5/4 y1 = 25/16
X2 = 6/4 y» = 36/16
X3 =7/4 y3 = 49/16
Xg =2 y4:4

12



A= - 1+ 4 25 +2 36 + 4 9 + 4
_4*3[ (16) (16) (16) ]

=7/3 =2.333333

The error estimate for Simpson’s rule is :

b—a
|E5| S WhL}D

D — Upper bound for the value of |f®)| on [a, b]
e When the power of f(x) <3 D=0 error becomes Zero
S gives exact value for the integrals of the functions of third degree or less
For the above example: f(x) = x*, f(x) = 2x, f(x) = 2, f(x) = 0, f(x) = 0 D=0
The error =0
Example 13: Determine n that will guarantee an accuracy of at least 107 for using:

1. Trapezoidal rule
2. Simpson’s rule

To approximate f; x*dx

Solution:

1. By Trapezoidal rule:

b—a
|ET|STh2D

a=2,b=4,h=(b-2a)/n=2/n

f(x) = x*
f(x) = 4x°
f(x) = 12%°

atx =4 f(4) = (4)* * 12 = 192 D =192

13



4-2 (22 128
|ET|S?(;) * 192 |ET|S?
2 <107 n?2128% 107 n>35777.08 n= 35778

2. By Simpson’s rule

Bl < 2= %pp

17180
f(x) = 12 X
f(x) =24 x
f(x) = 24 D=24

2 (2\* 64

1Bs < 155 (3) =24 Bl < 7o
¥ <1077 N>80.82 n=82
15n

Example 14: The table below shows the velocity of submarine with the travelling
time. Use Simpson’s rule to estimate the distance travelled during the 10 hours
period.

—

—~
>
=

N

v (mph)

12

14

17

21

22

21

15

11

11

14

PO INOO|OTRWNIFL O

o

17

14



Solution:

vV=— ds =v. dt

s = flov(t).dt

h=1,n=10

S = 1/3 [12 + 4(14) + 2 (17) + 4(21) + 2(22) + 4(21) + 2(15) + 4(11) + 2(11) +
4(14) + 17]

S =161 mile
5.8 Indefinite Integrals:

If the function f(x) is a derivative, then the set of all antiderivatives of f is called the
definite integral of f.

The form of indefinite integral is [ f (x)dx
The value of this integral is F (x) + C

F(x): Antiderivative

C: Constant of integration (arbitrary constant)
[f(x)dx=F(x)+C

5.9 Integration Formulas:

If u=f(x)
n+1
1. futdu= +c
n+1
2. [sinudu=—cosu+c

3. [cosudu =sinu+c

4. [sec*udu =tanu+c

5. [secutanudu =secu +c¢
6. [csc’udu=—cotu+c

7. [cscucotu du = —cscu+c

15



Example 15: [(3x? — 2x + 5) dx

=3fx2dx—2jxdx+5fdx

=3(x*/3) -2 (x*/2) +5x + C
=x*-x*+5x+¢

Example 16: [ cos® x dx

—f1+coszxd —f dx+f cos 2x dx

f 2 d—x+1'2+c
COSXJC—2 451nx

Example 17: Solve the following differential equations:

1. dy/dx=x"+1

2. dy/dx=\/x_y, x>0,y>0
3. x}(dy/dx) =-2,x> 0

Solution:

1. dy/dx=x*+1 dy = (X* + 1) dx
fdy=[(x?+1)dx y=x¥3+x+C

2. dyldx =[xy  dyldx=(xy)"*  dy=(xy)"%dx
dy = x*2 y*2 dx y 2 dy = x"% dx

jy‘l/zdy = fxl/zdx

16



+C  wWVr=ixt4C 2 fy=Vri+C

3. x3(dy/dx) =- 2 dy = -2 x> dx

-2

[dy =-2[x3dx y=—2(x—)+C

-2

1
y=F+C

5.10 Integration by Substitution:

If we have the integral [ f(g(x)). g(x)dx, substitute u = g (x), du = g(x) to obtain
[ fw)du.

Example 18: Evaluate [ cos \/Ej—;

Solution: let u = Vx Z—Z = %x‘l/z du = %x‘l/zdx

x % dx =2 du
fcos\/}d\/—;:fcosxl/z - x1/2dx = [cosu-2du
=2fcosu-du=2sinu+c=2sinVx+c

x cosV3x2—6

Example 19: [ ————dx
— /22 = du _ 1 |

Letu = v3x 6 T T 6x
d _ 3x dx x dx _d_u

N e 3x2—6 3
j du_ 1j p

cosu T =3 cosu du

1
=§sin 3x2—6+c

17



Example 20: Evaluate [ sin 3x cos 3x dx by three different methods
Solution:
Method 1: [(sin 3x) cos3x dx

Let u = sin 3x du = 3 cos 3x dx cos 3x dx = du/3

2

JuZ=llydu=2-L4c=1sin?3x +cl
3 3 2 6

W R

Method 2: [(cos 3x) sin3x dx

Let u = cos 3x du = - 3 sin 3x dx sin 3x dx = - du/3

2

—du 1 1 u -1
fu—=—->fudu=—=-—+c=—cos?3x + c2
3 3 3 2 6

Method 3: [ sin3x cos3xdx = %f 2sin3x cos3x dx

= %fsin6x dx = %-%fsin6x-6dx =1—12(—cos6x) +c3
Solving the Initial VValue Problems:

Given dy/dx = f(x) dy =fx)dx  [dy=1f{x) dx
y=FXx)+C general solution

Use initial condition to find C

X

VxZ+3

Example 21: Find the equation of a curve whose slope is and passes through

the point (1, 1).

PR _dy _  x 2 12 _
Solution: Slope = P e dy (x“+ 3)"“ =xdx

dy=(*+3) Pxdx  ldy=]@"+3) Y xdx
y =] % +3) Y2 (2/2) x dx

y = 1/2] (* + 3) 2 (1/2) x dx

y=%*2 (x*+3)*+C

18



y =+V/x2 + 3 +C (general solution)

At point (1,1) 1=V1+3+C c¢c=-1

y =+x2+3-1 (particular solution)

Example 22: Solve 2y (dy/dx) = 5x —sin x x=0,y=0
Solution: 2y dy = (5x — sin x) dx 2y dy = 5x dx — sin x dx

2

12y dy = [5x dx — [sin x dx 2%=5%2+Cosx+6
y> = (5/2) x* + cos x + C

at point (0, 0) 0=0+1+c c=-1

y> = (5/2) x* + cos x — 1

Example 23: Solve the differential equation dy/dx = 3x* — 2x — 1, the initial
conditions (y =10 atx = 1).

Solution:

dy/dx = 3x* — 2x — 1 [dy =[3x*—2x-1) dx
y=x—x*—x+c (general solution)
atx=1,y=10 10=(1)*(1)*-1+c c=11

y=x>—x*—x+11 (particular solution)

19



Nl

CHAPTER SIX
APPLICATIONS OF DEFINITE INTEGRALS

6-1:Areas between Curves :

PR
£1%)=Lx 1 7 ~gh e
fi(x) 1 . Yz F2(x)
fo
B o = | . %
e

We want +e g-(nc\ {;he' area between {:lie 3Mf>l1$ °'p 'flle
cantinuaus g-unc&img_- Y, = 1 (x) and 32 = fa(x).

Area of S’cr\'P = Area e-?-lrectqnjle = [l,(x)~¥z(o<)]*e\x
1§ the area between the u?éer curve 3‘:-('..(70 and

tl\e \ower curve J;_: ﬁzCX) IS Jé"ﬂd"l‘_fJ. bj . A > '&ltén g
L ' ‘ | b
LA = g [fi(x) - Fa(x)] Jx} -

Ex.| : Find the ‘area between the curves = cos X and
J:-Sfl:t?( ,crm X=o0o +o X=T/z .

Sol. From tl\e JrqPI,, we
Can see that. :

ﬁ(('X) = CosX
fa0x)= —Sinx




b =
Area= [ [fix)=fe(x)]dx

/2 /2 |
—> Area = j [Cc,sx-— (-—-—Sln‘x)}AX ::J (CoS’X-f-Sl"l"X)clx

:[S\'V\ X — CoS§ X -_\Q - (s:'nlr_z_. C.o.sl;f.:)_(sfno—cuo)

(\- o) -_.(o—\) = 2 um'(:{

? Find +.-\«e areao ‘DO\AV\JQA LJ -ELQ ara\p\«s oﬁ 3:7(1 an

y=2-x* for ogxgz .

sol. First Lind the P eint
od intersection betweey
the e osro\‘,ks.

- 'L"
—_->’)<7"'|=?9<"+I ‘_'l=2—’X

X~ out of {aterval
= X = (s the X-coardinate °£ ¢he P°"’f °£ intersection.

From X=o 4o X=1 : $(x)=2-%x" and ﬁz(x)z'x
From x=1 & X=2 @ filx)= x* and fa(x)<2-x™

{ [
Al =L[(2-°<‘>—°<IJ=‘X = [, -2y dx
L [Z'X"‘ %—X3 11 :[’2.(])-%.0)3]_‘.Z(o)-%(o}]:%_

Unigs

g L
Aoz [ [ x*- (2-%%)]dx = | (2%"-2 )dx
:[%.’xs '2_9(] [—2—(7-) 1(7-)] [i(u -2(1))= --‘4"d's

= A=A4f =t 18 12 .
=3 | +R2 e =< 4 Wnits



| 2J
=x.3 piv_\cl 't:\«e areaq c& &\«e r.e%'\@r\ n ‘t\'\e Q-'W'S{: q,vmér‘an't

bounded above by the curve yz=Jx and below by
the X -axis and the I'ne J=K-2.

_{f& +he ?o'm{- aSE. ‘nrersectian: yA gy=xX—-2
s Ar [ y=i%
Jx =%xX~2 At

sq_uqrinﬂ = X =(X- ‘2.)1

0
N
Fr————
R

X= X'-4¢x+¢ >
'X‘L—S‘X-f-(/— =0
(X —¢)yx-1)=0o
= X=¢ and x =1
X =1 IS extraneous root cemes Lrom Sg_uar/rtJ (mv/ec{—el),

= X=4¢ s the X - Coardinate Lor flv intersectimm foz‘/r{.

From X=o +to X=2 élx-e area /s unde, the curve Y=y
From X=2 to x=¢ : £1(X)=Vx and Ffolx)=x-2 |

2
AFL\B?ch = '%‘['xyz]z =2 0L St
| 3

)

- 2 - 2 -
= 3*\}?— —3-'*2-\}? = &-E;E Units

¢
Az:L' [Vx - (x-2)7dx = $:<x|/1_x +2 ) dx

3/ t
R AR DM E TR EET A
o2 e VT -

(5 ) - (A5t +2) = H oL

" - ANE (i VT \ _ o ;
= A =AAi+AL = e +(__<53_._ ﬂ?i) = = usrits
Mo te : )/OM Can 161.'14 6“& qreqa é] Qnof‘4er Luaj .
A = (ﬂfﬂﬁ uncjer J:ﬁ ﬁf‘(‘ﬂ""l X;o to X="')-f";“?},e.¢"ea

\
= jo Jx dx — -‘Z('L)(z) :%’.um'tr




o
Inteqrating with resyect ts y D

’X|=£|(SJ |

- T /7
W\r\en ’cke ‘OO\Imc“nﬁ curves f—or a re.ﬂicn —
are described \oj x=£(4) 5 che Area 3 A
‘OIQCGMG.S 8 ' c |
; l
b: Jf [-ﬁ( (y) -'-Y-'z.(_‘d)] c\.D = :/i //:. .
o L——t‘«—»&w <3 5 Cy)-Loly)

fiv) J

where : £|(‘5):‘$ V:.“S\"t‘ l,\amci curve . -
and f-z_(ﬁj) iSIe.-f-{-_- L\omé curve .

o
b

Ex.1: Find the area bounded by the araphs of X=Y% and

(A
i X=2-4% 49 X=y?
sal. ?c'm&:s _'uﬂ. '\V\t—ersec_*cim: | P /
X=X

Y= 2-4" =2yt 2y
= 9=2-1 ¥ y=

.|
=> Areas S (2 - y2) - y*Tdy
--'| H I _ units
= L‘('2_~2_31)A3 _—_[7__‘1 - %-_‘j '1' :(2—-2-)—(—-2.-!-%‘-):%

Ex.2 : Find the area of ¢he regian bounded o the [ofe by ¢y
Curve Y=, o ke righk by the \ine y= o ong
below Yy he \ine Y=\ N

Sl 9=y, = - e-x o AP SR -
= X =(6-x)" =2 x = 3C-lex+x* h”?_- g=|
= X*— 13X +3C =o = (X-¢)(X-9) = : ‘ \\ —3 X
= X= ¢ “ xX=9 (ned/ecéeq() e Y=€~x

at X=4¢ = Y=V¢ =2 (or y=6-¢=2)
Y=Vx = Y *=x =3 x=y* s £(y)
Y=6~-%x=> X = €-y 5 Li(y)

= A= [[e-9)-5*T4dy = 13/¢ units
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[
-g.Z: Volumes of Selids of Revelution :

A solid 09, revaluxion 1S a Solid whose Shq’ve can be
3er\erqte<l laj r’eVolvfﬂj Plome "ejz'cm about an axss.
We will Sfuc\j three methods to calculogte the Volumes

ol these selids : Disk , Washer , and leinJr/'Ca/ shell
MC-HMAJ-

O e Disk Method:

s methed is used when the region is border on the
axis of:. revolution .

_ 3 \ -!:l\e SO“J P A
yA ,3-—#(“) 1 1
|
|
. % / Lo
| bsa 2
a dx b X h
k—2 5
.,,;\I'
x®
tefore after revolvin
. 9 .
v-eVo\ij about X -axis SR

Disk velume = Area 6f Lase % Weigut

Area of Circle % thickness
= W (£)) x dx

——
——

L tee radius °g- +he circle = rx) -L-\«en :
Disk velume = Tt (r(x) %dx
1¢  the Volume of_ {-lxe solid =V

_ = -
— kv = j T (rex)) 3%) the dormula of th,
_ 1~ § Vo\ume uo\\.en {Le "le'(m

s revolved abou+
a horizmmtal axrss.




&)
A8 e reaiem- LS revelved—alaut o vereirey]” q’xl_‘— =
the velume \oecomes Y

L

LV = c w (rewy)’ 331

E'X-l \\Ae v—es\on hetween -G«e Curve Y= Vx » 0 <’X 4 5 ercl
the X-axis is revelved aboyt the X-axisS 4o gernerate
a solid . Fiud {-L_e Volume o,[’ flu.r Solrd.
N _
Sof. \ = W (rCX)) dx 3
SoX. : |
azoe , b= 4 : -
r‘('x) = 3 \’\ ' { o
P L \‘ >K
S"\‘ A .Tl' Y.,xz -‘\L‘ I 1 [LI"L o‘l__ e Cubi'c
o o~ = b =8 Units

E*x-*z_ F\'y\A *:Le Va\ume c.g_ {:-Le JollJ j&neraéeq’ I:yl‘eVolw:g

the curve J=4-x* , oKX K2 ,about J—axs.

sd .v-_-JA (r‘(\_j)) . d _ 34
>, . Y Y
C=2=o c!:('l-
y=U-%*=> x"= 4-¥ = x= 355
= X = ‘L.L_y the r{}//f‘ fhori-l'a'n OQ:‘\ 2, X
= rdy)={u-y
e ks @) 4y 5 f ™ (4-9) dys
i __Tl-[q_y.__zj:"--rr[(lé ) (o)j 8“rf:uluc

Unitg

dy




&,
_@ The Washer Method:
18 due res'\av\ s not border om dee axis o.ﬁ "QVolqtl'cm)
the solid will has a hele (or cavity) . Ln this Case ,
the washer method is used.

S yfO) i
|
|

o

a _ b >
éx—ﬂ

\oe-f-ore

revolving after revOlu.'nj (the washer)
about X—axis R:outer radiug
r: inner radius

Was\\er Volqme = Area cg- base % kel'sb\t
(TR*—Twr®) x dx

(RS —rT) & dx

T [ e = (900) | % dx

We can See ¢hat R=RX) and r= r(x) .

o N

= Washer Volume = T [(R('X))z-— (r‘C'X))?.'] % dx
I-S' g\e velume o.p -t-L,g So“ql =V

= LV = S" 7 [ Rex) = (rexy) ] Ax}

a

1§ +he regqion is revolved about « vertica| axss :

d N y "
= \"‘5 T LR En) s <'”<_5>>1c‘5\\

.




®

Ex. TFor the regiow bﬁuﬂlec\ by the jr‘aM “yEg=x T che
X~-axis , s-mé t—l«e volume.s OTQ t'Lc. So/la/.r OLtameJ Lf}'
;rEVO»\VMJ _tLe Y‘ﬁ-stcm q\oou{- :

:_“r\e \ine y= -3 @_“"-Q \ne X=3 .
y
Sel.  Fiest §ind +he w=H-x-

X - invercepts : | ?\-;

Y=o =5 4-%x"=o0 = A"z
= X=2 Y X=-2

and +he 3—-'\ﬁ-lre,;jc,e_|;-l7 .
X=6 = szl\.

@O About the line }j‘-’-"3 ¥
b z
N = S;IT-E(R(DC))F-(P(-%)) }éx

CL.':'.“'?. > \9:2-
R(X)= Y +3 =@-xH+3=2-%"

y{x)= 3
%

= V= ™ [ G-xt) = (3) ] dx

-

(

)
RS S?_ [w9-14x™+ ’X‘f)-—?] dx
2

H

T (e st L e ) dx

—

J -
e xS 4%
W Ao

‘IT[(-—-—'1L1:- Boj (=22 31+Iiz_80)]

¥ = .l_‘tE_ T cubic wnrits
e s - % »



r(y)
W/%mafy
27l 7 7T T KT 7T 77 irT Jy

y N A4

- X
I

32

-

R (Y)

|

|

|

i

= "

V= 5.&“ LR = Creg)* -
i - ) | Ay

C:O F) A: L\-
Y= 4-X"=> XT=4~y = x =5 J4—y
u-y r\'s\‘\i.- Wal{ .

x::_m \‘QL"? kﬂ“-,
R(Y)= 3 + \""XI = 34+% = 'S-\-m

r(y)= 3=% = 3= J4-%"
= V= w( [+ - (-85 ]
= j:’{EH CVEy + (-9 ]-[9- <5 + C4-y)]] 4,
=W (] Di2¢4-9)" 34y sz [fmy)™ g,
bl [(q —y)/ 32

JJ = -em Le-4

= €4 T QALLC. units .

!
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€.3: Cylindrical  Shells.:

Cylindrical shell is generated by reVolv;‘nj 0( rect—qvq(qr
strip abowt an axis parallel to this strip -

Sometl'me_r, CJ/:'nan'Ca/ Slte(/_f Mé’{-/ma/ /s Casier to uge
Lecqu.re the ﬂonwu(a Oﬂ 't does ot ”e»’zu/'f"-’-f 57.0167/’/’(}: or

(n Cafes wlterp j or X are C/HZ'[’CM/# <o C{ebermr'ﬂea/ in
terms o[ another .

‘j,:\
ds

|
T . i
[ :/:,C('x) | h
| L l 5 P

a X -lo X
X

after revdvfng

F\Q‘H:i'\ﬂ ’r\/\.o,
(-l:\ne cylindrical ) Wlindricod sk

she\l (rec&mgu\o\r sheet)

‘oe-‘-ere Y"Q\IQ\\I'MJ

Volume «f lindrical shell = Voelume of rec{:andqlqr sheet

= /Q *\'\_ xt
=2Tr%xh xdx
We <can see ‘c\r\o&- r=rdx) anl \«:.h('x)

= Volume of " cylindrica) ‘skg\\ = 2T¥r(x) #h(x) xdx
1-‘: ‘E\v\e VO\MMQ_ qg- -(:l\e S,O‘l'é = _\T |

@L’V‘ = sq 27 . F(Xx) . k(?().dxj revalv:’nﬂ about

Vertical axs
When the region (s revolved about Werizomtal axis:

Ao —= . qiy 1




Y,

Ex. The disk enclosed by the circle X" +Yy*= ¢ is revalved
about the y—axis ¢o generate a Solid SPLere.A hole
°g- &'\QMU:QV‘ 2 units s 'l"L\-Qn bered 'l:l«roudk -t—he,
.SPlte"Q ot\ons the Y —axis - Find t-\»q volume aﬂ. -E]»u.

cored S\okere :

sk, y

J} l\o\c T
x4y =¢
é/ A
_ﬂ@i \ 2 x 3 /

t
Yake m\j the Por{:im °Q— &\«q Circle (n e '1.3 q_\’\ﬂlr‘an't.
X't yt= ¢ = W= 4-x? = Yy=Fi4-x* Y y=f¢ar
= Y= \sl«l-'xt K 'l'l\-e Upper POft-/'a'H. ' '

b h

= S 27 rex). hx) . dx e x
OL"..'.‘ ;L:Z c:;. ‘
r(ex)=%

Wex)= Fex)= J4-x*
= V= ST 2 . x - VH-x+ - dx

3
7 \/2 - x? %
= =T &‘ ("‘l""xl) ve2Xdx = - E Gl ey ]‘
. .
. ___37___", E(l{—’xt):,h]‘
3

3 ¢ \V} 1“' "0 X
» -&%;'-“ [_{J_:_;_] ‘_— 2Jd3 T Cubcg uni'ts <q;pe:'tporﬂ#ﬂ
=> Volume of cored sphere = 2#2U3 T= 4TI cubic units




&
6.4 Leng.{:l,; OQC ___Curve_; —in- -{;-de P'IQ‘H‘G‘-"

Y -
Take a small portion o the Il y=$09 I
3(0\?‘4 (-l:\\e Segment PQ) . I p ]
Q };L _:

P%Ax

dx o

P e

d8= Jdy)*+ (an* (@ clesed b )
but $(x)= A‘—:;( = dy= {x) . dx

= W JFwax T @0t ={Wxt [@aw ]

= 49 —J(#f(')c))t+\ d x ::X\ +Gf('x)f[ dx

= =< JH-(“" oA

L ’ctwe \en.a{-lq o.c ’c‘~e curve -Ircrm X=a to x=b is L :

= ?L = Lb \} \+(%\§;<){ Ax]

1f %‘J} fails 4o exist and % may be ff'xf'Sf,m‘:llen:

i &=
l“hﬁ\ﬂfﬁ)‘ q

_W\.e Sl'\or’c :1 J;'Leren{-fq’ -ﬁormulq ,f-or 19'216 /9'964 0-,( t“l'-e

_Curve 5 ¢

L L B e - e




@
:Find the \ength of dee curve ‘y—\x”"‘-\ o KXgI

5«0 b :
L:Sql\i-( )7'...-\')( ’Ir
aAazoc |, \p—\
dy LN— Vv _ Y
3x 3 7-*9( =0 2 ol /i
(Ax) bt x X =3X - —1/' x
,S K}'S)t — (\ "\'37()
= L: J (\ - \ \\ \[2
. +3'X) . 'X-—-é- eﬁ"'g") - 8dx
32 4! 3/
= \?. ?_}_ [(\+ 8’)() /2:‘0 - [(H—S} e (H-O)VZJ
3
:'\Tz [9 v \3/1.] - :T_ [zq...f_\:?%:%. units .
Ex.2: Tind +he lc'vd‘ of the carve y=(X% )/3 °osX{2
Sd. &3*'2. % -/3 — x RE
dx %) B —3_< =) p
dy 'L x . /3 \ 2 2/3
(55 ( ) = ?(7) S
‘\" ) s not JefmeJ at X=090 » éLere,(o,-»e ° 1 ;. >x
t'Le M{.tdm,,,[ ,‘/-{-(49 v s not defined at x=a.
Se + .?.l..’_‘_ :
l’j d

J
JHENS 5 e L s w=2 2By sy

o> [P = [re v = (rras)™

at X=o = y= L.°_)1/3_° = ¢ =0
q{-X ?-=ay g___) -_-!%cLJ

_ N \ -
=>l_ f \I dx i+ dy _.j (:+9J)"4J ‘;—So(””) 1'.94_\,
=l9-:é-"3:~}:(1+9y)3/ JO:E(:oJTE-—:)::z-zgs units
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: _6_’..‘_‘5, : A Féas Q-p Sur)Lq_c_e S Q'p L Re_volu_t i.o_n._: = ' L. Lo

YA /y:ﬂ?‘l; YA
NS

ciranlav
band

( belore Y‘eVQ\Vinﬁ) (qg-ter "QVO\vinj) (-\:\q circulay loalml)

Sur&e\ce areaq Gg. t\«e C(rc_ux\qr' ‘oomc\ = S\Mfsrc\ce. area 0". g-ruggum

Surface area o Srustum = 2T GEts )'S

Yz
2 s
’:T‘(Y"ﬂ-\"?_).s

= Surface area of the Sircular boand = TT(ri+ry)-4Q
As 48 is very small , then oy =k
= Sur—g-qce NRrea °.?_ +L.Q Q.{f‘m\qr ‘oan = 1T (Y‘-I'Y') . AR
= 21wyr.df

But: AQ::\ \+(§:\5;)1 dx = \JH-(J;"F Qlj 4 an F= I’C'X)::-.-r(y).

1§ the surlace area of tle revelved <urve =S , ey .

—

1 :

S = S 2T . r(x). i dy * . SR —— For revelvi
5 ) J |+(:\';(’) Ax) G) albsdis l‘ﬂ'f%c#f‘[

L

or verética f qx-j‘sl

] S |
S:._ gc 2277 )’Cﬂ) o \! l‘f'(ij\;f.)?~ el_j).. '@Far revalyy

°r Veréical ax s

Nates:

x T '?he curve /g Jésé}-{l,écj in terms of x Use E@.(Dv
% 1% the curve is described In termy ofj Use eg_@

o




(5)

e short differential Sormula for the surfice area s

ng 5 2T @ ,JP] revelving about horizaatal or vertica| Axis

18 Q- vrix) = the limits of f'n{-gjrq{-icm are a ¥ b .
1L < r(y) => the limits of integration are c ¥ d .

di = \-k-L%K)L dx For using rixJ’

4= \\H. CAT;.)* Ay For wsing T(Y).

Ex1 Find the 5“"#‘.‘“"—2 area Jcnera{ec/ {’] r‘eVolw'rg the curve
Y=2Ix , \gx K2 , about the X-axis,

b -‘% -
Sol. _ y=2Vx
=22 S_J“zw.r<x)-.\|1+(g§)‘4x
azl , b= 2 ! ra:
F(xYy= Y = 2V% o i e~ G
i B e | - A
T“z<zﬁ) V7
Jg S D G — dyQ _ -
SRRl SR I i [

]
£
—|
Sy
'\l
/'\
X
+
\_
~
[ I
P
I
=
:|
o
o
»
+
~u
S~
~
—
- N

= _8_3__11' (3V3 =2z ) unres

Y v - L ¢
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ted b
Ex.2 . mJ t'lve Surﬁqce qrﬁa/(?eﬂefa < - revol vzﬂj t'l‘g
Curve X = —-—~(5 +'l) > \SY £ 2, about the x- —ax/s

Sl @ j?-'!f\"(:l),’:-f-(_&J dy

c=l s d=72
rcy)y =y

dy
k )_ Yyt (v"* +2.)~3 +2y
J \-\-K&T'xg \l -|-?.J +1 \kﬂ -+-| = SL-\-l _ [?E"‘:ect S'spxm-e:)
== == Z’rrg\ Y8 +1) dy = 7—17'5 Ch +.‘J)e\3‘21"[-——+-—- ]L

{
P2 L) (Grb ] eew ()= U wnits

Ex.3: Show -l:l\q-t- e side surface area of the cone /s A=TRs.

Sol . W voint A is Qﬁ/o), f*g
To Tal the poink B: ) g
ST W R = \A-_-.'sz-a"‘m
i 1 : . o R \A
=> the poind B i (o : NORETHE N (Rie) X
We side surface qrea A = J 2T rix) JH(“"Ax s

e cone 13

azo 5, b=R ,rix)= "X dtnevated by

Eind ‘E\«Q ev\_mb\m g-ar ‘EL\Q Slqﬂt H"LQ : "eVﬂ\Vf\yxa by
. o
e B2 ~Y - o= \IS"~R1. ‘ ,ls"-...g'l. ;\':: AB q"?ﬂt
A~ R — DA,
J=mxt+b = d“—-—_..‘r:_, X+ m <~ thy U
dy e JsTrT = s SRl g il en -
*= TR S i Sk SR A -

=27 (g)(3) Ix"1] = TS (/%] = wiRs 0.k,
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Exercises €1 / P.3#8 -

@ Find *:l\e area OQ- ’c\xe SL\erA “Cjion 9
b
Sk, A :Sq[ix(’x)—ﬁ-z(’x)]éx

A=TOo 9 b:‘. &"\3
X
£.(x) = e, fax)=e€

In3 2%
@A’;S‘(e -e'x)é_x
- 2% Q3 2_13 o o
=[Fe - X)) (\zen—e})“)—(l{e —e

(-]

:[\?(9)_3]_[ L=} :(12_3)-(_‘1__—1):2 Units

30) e Yr\'s\\re belows shows tn’anjle: AOC inscribed in the region
cut from the parabola y=x" by the line y=a*. Find
{'L-e rmi & og— t-Lg rotte oy ¢l area 0& tle ‘E"l'qngle to
the area of tle parabolic region as a approaches zero .

Sof.

Area of t-r(qn\,le: .lT (za) (al)

= a3 un/'ts

For the qua\bo’fc "ejicm:
b

Az TR (x) =) dx
a

XA ==—a > b= a 'g‘l(’X)z 11,'-'0\1", r-z(’x)= j;:‘kl

2 Az [T (@t -t ydx s [atx - 5 x0T
-a

~Tat '3 Vo) =Tl 39 7 3 | 3
=[a*@) - L o 1 -[at () -] sla-Fat ] -[-avLld
T 3 3 :
= & ___:_,_q3+q —--)5—0\ = 3—3-_q3 unitd .
1
= i 2 - T =L =
a-—so %.q:’ ase *+ &
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Exercises €.2 / P-3IRY ¢

—Tke curve }3:5in')f P OKSX KT 5 s rFevolved Gl'oou-l; -!:l‘_e_
e y=C t° generate a Solid . Find +he Value Q)c C

that Minimjzes the Volume .

S, V=Sr T (rex)) dx A U’—'ls""”‘
az=o , b="T __:__d“ "R Jx." __i-:c'
k) = | ) = Saix | = 4 ,'| >
= ,C-Sin'xl T ’
-

v
= NV = T\'S (c - S\'v\'x)le\x

Q
W A W
R S (Cl-'z.csln'x-i-sm x)éx
Q
: iz
= & ‘ —Jd sivex
“T[CX+2C-COS‘)(+2';< 5 ]o
Sl'*tz?r)—(0+2c.coso+o-5_i:_°)

b sin xa = Cosex
.

=T [(Ct'[T-I'ZC.CoSTI"\-—T%--‘?
=T[cm-2¢+T)-(zc)]= w(n + I ~¢4c)

=31V (c"m+ X _tc) °eLc g
A—Y-:TY('Z.CTI'-‘-I')'
dc -
AV o = w(2TWC —4)=0 =S o2Tc=4¢=>c=2_
dc ( ALy
Checle for min point: - !
Gl

42V= T(am)=2T* (tve)>\,/ min.

de*
L
at €= = VT (Ger+Z-4(Z) T _yxo.93
Checle bounds : : ‘
.
AL x 4.93

| at czo =» VE TY(_.Q-\-T_%_Q); L
| e at c= | = V.= B QT_'-%‘_L"'):J—;—‘L—(L/—W)WQ 5 A% e

= C= _2-? afve.: minimump vo/qme 5
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- =Xercises 6.3/ P.397

.—W\e region in the S—WH: °1‘-"\°Am'1t \90“"A€A \"j X=Yy y x=1,
and y=! s revelved about :
(o) the X-~axis (b)tle y-axis <) the line x=1 (d) te line g=1.
Find the volumes jeneraéEJ Ay each reVo/w'nc?-

SoQ ”A xX=\
y=I

(a2) About +the K—-ax(s : S
Y )
Ny LY ) ' o
4 ¢
x Ay

N s

Use C_yll'nJrl'cql shell method <
d
V= Jc 27 . rey). W(y). dy

rcy) =Y
h(y)=s1~x = - (3-—33) — ‘-—3+33

Fey) *hig)= 9 (\=y+y) = 3-yayt
I |
> V= flam (s-wtay dy s [ Lt Lt L)

=2 [——-\3--\-\—9-]-'-‘- -"—;_-'IT cubric units,
(b) Abou{- the J-axis : Use washer Methad: i
V= 5 w[{R(s)) ~CrenY )4y A; \
cC=zo , d =1\ 3 dy; L
RCWY=1 » rly)y=x=yY-y N %
2 * e ) il V- fag: s
(Rex))*= Cren)= 1=(9-9)%= -yl y¢ g

= Y = T('g (\ 9 +13‘* -y )A‘j
: L
Fe L [-3"‘3"5 +?5 —3‘-3?]° :-"['"'j*?"Ej‘ =T U




'(G")—moﬁu:t'—‘tLuQ"—\'ivte“'K"E"'\":'"‘—'““" e TCe
Use :;\«o. disk meshod : ‘ C‘:
V= ) 1w (reyyy. X
| T eyt dy L
= 5 d=\ . "
FCY)= I=x = 1= (4= = 1~y +y° | | -
\ 2
ﬁV:J“U-ﬁﬂz’)&:
[
= 5' R S A"
= (V-2 vy ry —2y T4y € ) dy
_ 2,0\ D Y J
=. 7w Lu-g™ w4 o yl-2 9T g
~ i) AR 12\
= Tfl[\ l+_5-\-_.L ?4-;]\ 2.\0_“- Cubic unrts,
(d) About +he line =y .
Use +¢he cah‘nJﬂ'cq/ sl«el/ Me-ﬁésaJ g
d
= J 2T . ry) . h(y). &3
[
Cco » é:\
ry)= \ -y X

h(y)=\—%X = \—C3*53)='“3+33

r(y) % k(s):(l—u)(1+y+;3) = |~25+31+_y3_39

l 2 3
= Vz am S OV=2y+5"+y -3‘*)83

= 22mW ]__.".'I -LJ "““"3 ""“"j -—“'S-:jyl

(1

R \ | |
Z.TI'-_[\ \+*—,§-+—¢_—“§_—]

= &3 =T Cubic uni'es,
e ' ‘




@Y

@F\'nés the volume of the solid Cjerzer’a'beJ Lj reVaIw'qj f.-L{
region in tdhe first guqequnf bounded LJ Ly::p(‘l and y=gx
about : (a) the x—axis (L) the Iline J=8 :

__Si First Sind +he point P : sf P
=9 D= A
3 T 3:')(3
4x = X3 = X ~Yx=o =% (X —(!'):o_
= x=0 and X'z4¢ = X=-2 ¥x=2 o .
at X=2 = Mq= 4(2)=g K
—> tle point p ¢ (2,8) .

(x) About +\e X—axis: Use washker metho :
b T !
V= Su ™ LR < (rex)' ] dx

az=-e o ¥:z_
RCX) = Y, = 4% 5 r() = ¥,z X° —

= V= [Tw L= )] 4
* 1 6 - \¢ .3\ F72
= w Qext-x )AX-‘W{__—_;X-—:FX 1

=7 l_%*g - \3&\7.51 = 52"7- T cubic units.

(L) About the line y=g : Use Cd//'nJr/'cq/ Shell : |

A

d
V= Tew.rc9) . Wiy dy >
C ;
C=o A:S
r(y)y=8-Y

h(y)= X2 -%| . 4
Y=2x = x= 33 = .- y'd '
=4x = =d_
%‘j \‘(3: ;("3_4-1? X =g d v
r‘zg) *:Lﬂ)zkg:g)(\j‘m_ %5) :1‘3 3\/3_15 _3:,3 :
= V= SQ 2T q];_z;f\ Boay-yiB, L9 )dy =2m[ 82 _5‘_%?{1 2

= S T Cubic units

/3

.‘-‘ ‘L
+ &Y
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Exercises ¢. 4/ P.%ay : S .~I A

® Find the \emgt\a o the astroid ’)C-‘L/:l> + jz/gz‘

. t
S, Take +he portion in 1S Ql_bxq(lromf: : 3
3 . X +y Pz
& Q\ A\
- l s ™ x
{
b
- dy ¢
L= Sq l\—i-(_{’.() dx
a=o P b:
'x"‘/"+5‘/3:| =S W 4 s e /3)3/7'
3\ -\/ 1)1\ ~\/
e H @) (=2 1T i (=) E L0
. ~2/1 -2/3 el -1/3
| de) --(\-- ('X ) =7%X - %X = X -
| ®
| ! | - \ = \W\ rogev
d-l +k%)t - jl-l-_’x ?-/?_.l = (7( 2/3 I =N ¢ \/3 lv‘:{:ejm

Q

f = the total /eryfé .,for the Ou-l-rare/ L *- =& Wnitg .,

@ Find ’ck lendtl: of the curve J = f JCoszt dt ;, o gX g <1;_..
SaQ L = J “‘4—(3[&) Ax

i = L= j' ’X-‘hdx}? [Xus] ——\l“‘{l:%

s¢
(1 /)“"J“'"Entq/ ﬁ’eartm)

X
dy
il m \lZCosx JzZcosx
# '“q
(o}

\r? c.o.s’xd?t =Jz [Sm xj /‘5‘ 2 [SthL*Smo']
0T Lo = 1 wnit 7

e et .l e e e e e e A e e s




LS)
’\FWIJ the Su/che area gener’atﬁcf L’j "eVOIVMJ X=
#rd‘m ‘7_, 4o J—2_ about the x-ax/is.

(Hmt Express dl = de) +(dy)r in terms of Jy and ap.o/y

y4

_+‘ﬁ

8Y?

S:SZ?TQJI)- :t
sd. »x_._y_q__‘_'_ - J_.yq.;.L.j'?' —f“"é "
Sy - Y 837. ¢ g o X
! D G e :
Sl_:.: T*Lf*j — %*j _d 453
= Jx=(3-”3)cl_y =dx) = (3—-%3) ( 5y
S oy Jy)

— A&:J@x)‘«-@sy j(ﬂ ~ \6 =)&) + @y

:ﬁﬁe—%
J(y +qy3 “dy= (J +q]3)43

d
JC 2T .rcy).d}
> rdy)=y

‘ - G = |
+T€37)+‘ *3 -JU HRETIT: dy

i perfect S%uare\j

Now &= JZ‘NGJR

—
—

c=1 F) 4"—'.2.

S 3
= S-5| Zf.-n'.:j.(fj-f-‘w:,).:l3

—
—

-
—

S (4h + -y dy

- ¥ +J v (& s Hm) e E;a‘,)—_‘
2T [2.5-3 1 &

>>>
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Na-{:e: We can use +he Q_q_ @ / P-ly (lectures) 't'o éolvr,

this problem :

(L) =

d
c
r d=2
N
¢+y*
i
= L

XH_CM = \\»36+

= s=27{ 3 (Sf"qjs) dy

R
—

2T ST CHEE ISR

74 5%
20

27T . rca)-JwQ%)‘

r(y)=4

T cubic units.
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CHAPTER 7

TRANSCENDENTAL FUNCTIONS

A function that is not algebraic (cannot expressed in terms of algebra) is called
transcendental function.

The transcendental functions are:

1. Trigonometric functions

2. Inverse trigonometric functions
3. Logarithmic functions

4. Exponential functions

7.1 Inverse Functions

A function that undoes, or inverts, the effect of a function f is called the inverse of
f.

One-to-One Functions
A function is a rule that assigns a value from its range to each element in its
domain. (i.e for each value of x, there is only one value of y)

For example: y = x° one-to-one function
y=4x-2 one-to-one function
y = X2 not one-to-one function

Some functions assign the same range value to more than one element in the
domain.
The symbol for the inverse function is f ™

x = foy—fT—x=f7(f(x)
e Only one-to-one function have inverse.
Finding Inverses
To find the inverse of a function f(x):

1. Express x in terms of y (x = f(y))



2. Interchange x and y in the formula of step 1, we get the function g(x) which

is the inverse of f(x).
3. Checking the inverse function by finding f(g(x)) and g(f(x)), if f(g(x))=

g(f(x))=x, the f(x) and g(x) are inverses of one another.

Example 1: Find the inverse of y = %x + 1, expressed as a function of x.

Solution:
1. Solve for x in terms of y:

_1 +1
y—zx

2y =X+2
X=2y-2.

2. Interchange x and y:

y=2x-2
The inverse of the function y = %x + 1 is the function f *(x) = 2x — 2. (Figure 1)
3. To check, we verify that both composites give the identity function:
f‘l(f(x)):z(§x+1)—z=x+2—2=x

(' )=-Qx—2)+1=x-1+1=x

Figure 1



Example 2: Find the inverse of y = x/4 + 3
Solution: y = %, y is one-to-one function

1. Find x =f(y)
4y =x+ 12 X =4y - 12 =1(y)

2. y=4x-12
3. Check: f(x) = ==, g(x) = 4x—12
ot = (4x — 142) +12_
12
90 = 4(*) —12=x = f(9()

g(x) is the inverse of f (x)

7.2 Derivatives of Inverse Functions

We calculated the inverse of the function f(x) = %x +1as f7lx) = %x +1in

Example 1. If we calculate their derivatives, we see that:
d 1

%f@:a@x“):z

— (%) =i(2x— 2) =2
dx dx

The derivatives are reciprocals of one another, so the slope of one line is the
reciprocal of the slope of its inverse line.

Example 3: Let f(x) = x> — 2. Find the value of df /dx at x = 2 without finding a
formula for f(x).

Solution:
dffdx | =2 =3 X* | x=2=12
df Hdx | (=2 = 1/ (dffdx | y=5) =1 /12



see Figure 2

: Reciprocal slope: ll_-.

| - —
- (6, 2)

| | |
L . X
| b

Figure 2

7.3 Logarithmic Functions
If a is any positive real number other than 1, the base a exponential function
f(x)=a" is one-to-one. It therefore has an inverse. Its inverse is called the logarithm

function with base a.
DEFINITION: The logarithm function with base &, )= log, X is the inverse of|
the base a exponential function y=a"(a>0, a# 1).

The domain of log, X is (0, ) = the range of a".

The range of log, X is (-o0, o) = the domain of a*.
Figure 3 shows the graphs of four logarithmic functions with a > 1.




Figure 3

Figure 4 shows the graph of y = log, x.
The graph of y = a*, a > 1, increases rapidly for x > 0, so its inverse, y = log.x,
increases slowly for x > 1.

o

Figure 4

We can obtain the graph of y = log.x by reflecting the graph of the exponential y =
a“across the line y = x.
Logarithms with base 2 are commonly used in computer science. Logarithms with
base e and base 10 are so important in applications that calculators have special
keys for them. They also have their own special notation and names (Figure 5):
loge x is written as In x.
10010 X Is written as log Xx.

8- _1;:‘:'7

(1. e)
i N
;/ —




Figure 5

The function y = In x is called the natural logarithm function, and y = log X is
often called the common logarithm function. For the natural logarithm,

Inx=y < &'=x

In particular, if we set x = e, we obtain

Ine=1

Because e! = e
ex2.71828

7.4 Algebraic Properties of the Natural Logarithm
For any numbers b > 0 and x > 0, the natural logarithm satisfies the following rules:

1. Product Rule: Inbx=1Inb+Inx

2. Quotient Rule: Inb/x=1Inb-Inx

3. Reciprocal Rule: In1/x=-Inx  (Rule 2withb=1)
4. Power Rule: InX"=rInx

Example 4: Here are examples of the natural logarithm properties:

a. In4 + Insinx = In (4 sinx)
b. In= = In(x + 1) — In(2x - 3)

3_

C. lnlz—ln8
8

=_In22=-3In2



Because a" and log, x are inverses, composing them in either order gives the
identity function:

Properties for a* and log, x:

1.Basea: a'®*=x, log,a" =x a>0 a1 x>0
2.Basee: e"*=x Ine‘=x x>0
3 ax=exlna

_Inx
4.log, x = —

To explain:
1. a* = eln(ax)
— exlna
— e(lna)x
2 2% — p(In2)x — ,xIn2

3. 5-3x — p(In5)(=3x) — p,—3xIn5



7.5 Definition of the Natural Logarithm Function (In x)

The natural logarithm of a positive number X, written as In x, is the value of an
integral:

X
1
lnxzf?dt, x >0
1

= area under the curve y = 1/t and bounded by lines t = 1 and t = x(Figure 6)

I| If0 = x = Jthlnlnr_/ —dt = /—f."!
|
|

I'| gives the negative of this area.

i

X
/ Ifx=1,thenlnx :/ %ﬂ'r
| gives this area. __1___- —

¥ =Inx

¥

— ¥ =

|

|

| -
!_/
I,
M

|
Ifx = 1. thenlnx =/} it = 0.
)|

)
(¥ = Inx

T
1 x
x

0

. M ——————
.

-

Figure 6
Ifx=1 Inl=["-dt=0
Forx>1 Inxis+ve
ForO0<x<1 Inxis—ve
Lim,_. InX= o0,

Lim, o InXx=—o0



X
1
Inx = | —dt
t
1

X
1 djl B
nx—d cdt =
1
d1 1
dx nx—x
Ify=1Inu, u=1(x)
d _dy du 1 du
dx n du dx u dx
dl 1 du 1d —1
Lu=—ro fa u=Inlul+c

Example 5: Find dy/dx for the function y = x* In (4x)
Solution: Z—i = x? (ﬁ - 4) + In(4x). 2x

=x+2xIn (4x) = x (1 + 2In (4x))
Example 6:y = In (tan x + sec x), find dy/dx

Solution:

dy 1

= ————[sec?x + secx tanx]
dx tanx+secx

secx(secx+tanx)
= = Secx
secx+tanx

fsecx dx = In|secx + tanx| + C



Solution: letu=x*+3

du = 2x dx
X dx = du/2
fl B & L+ C = s nlx? + 3]+ C
w2 2) 7w T —p

Example 8: Evaluate [ —— dx

Solution: = =1 — =
x+1

x+1
[ =] (1-559)¢
x+17° 7 x+ 1)
fdx— ——x—1n|x+1|+C

Note: sometimes we need (In x) to find the derivative of functions that involve
products, quotient and powers quickly.

Example 9: If y = (Vx + 3)(sinx cosx), find dy/dx
Solution: Iny = In(vx + 3)(sinx cosx)

Iny = Invx + 3 + In(sinx cosx) = In (x + 3)/2 + Insinx + In cos x

Iny=%1In (x+ 3) + Insin x + In cos x

! dy 1( ! ) (cos )+L( sin x)

; dx  2\x+3
Lay__1 + cotx —t
y dx 2(x+3) cotx —ranx

10



dy 1

= y[m + cotx — tan x|
g 5 [G+D°
Example 10: find dy/dx for y> = /(x+2)10
Solution:
. (x +1)° 1/2 B (x + 1)°/2
“\@x+2)1) T (x+2)8
s (x + 1)/2
ny-=m (x + 2)3

5Iny = In(x + 1)5/2 — In(x + 2)5

5
S5lny =§ln(x+ 1) —=5In(x+2)

1
Iny = Eln(x +1) — In(x +2)

1dy_1< 1> 11 1 x+2-2(x+1)
y dx 2\x+1 x+2) 2(x+1) (x+2) 2(x+1)(x+2)
1 dy —X

y dx_Z(x+1)(x+2)

dy —Xy
dx  2(x+1)(x +2)

7.6 The Integrals of tan x, cot x, sec x, and csc X

sin x —du
tanx dx = dx = | —
COS X u

= —In|u| + C = —In|cosx| + C

11



= In + C =In|secx| + C

|cos x|

CoS X du
cotxdx = - dx = | —
sin x u

= In|u| + C = In|sinx| + C

= —In|cscx| + C

(secx + tanx) sec’x + secxtanx
secxdx = | secx dx = dx
(secx + tanx) secx + tanx

du
= j‘?: In|u| + € = In|secx + tanx| + C

(cscx + cotx) csc?x + cscx cotx
cscxdx = | cscx dx = dx
(cscx + cotx) cscx + cotx

—du
= jT = —In|u| + € = —In|cscx + cotx| + C

7.7 The Inverse of In x and the Number e

The function In x, being an increasing function of x with domain (0, «) and range (-
o, o0) has an inverse In™x with domain (-o0, o) and range (0, «). The graph of In™x
is the graph of In x reflected across the line y = X, as you can see in Figure 7.

E“_ v=In Iy

or
- x=Iny

Figure 7

12



The function y = In™x is also denoted by exp x

The function y = exp x is the inverse of y = In x

In (expx) =%,  forallx

exp (In(x)) =x, forx>0

The number e was defined to satisfy the equation In (e) = 1, so e = exp (1).
We can show that Inx = exp x is an exponential function with base e:
Fore* Ine*=xIlne=x(1)=x

Ine*=1 and In (exp (X)) = x

exp (x) = ¢"

Laws of Exponents for e*

For all numbers X, x; and x,, the natural exponential e* obeys the following laws:

1. e¥l.pX2 — pX1+x2
1
—-X —
2. e ==
exl 1—x2
3. prote eXt™x

4. (exl)xz = eX1x2 — (exZ)xl
Notes: 1. To remove logarithms from an equation, exponentiate both sides.

2. To remove exponents from an equation, take logarithm from both sides.

13



Example 11: Find y for the following equations:

1. Iny=x
2. In(y—2) =In(sinx) — x

Solution:

1. Iny=x
eIny — exZ

y:exz

2. In(y—2) =In(sinx) — x
In (y—2)—In(sin x) =X
y—2
, = —X
sinx
-2
elngimze_
y—2_
sinx
y =e *sinx + 2

In
X

—-X

e

7.8 The Derivative and Integral of e
y=¢

Iny =In¢*

Iny =x

1 dy_1

;.a_
v _
dx

14



The integration of e*:

fe“du=e“+€

Example 12: Find dy/dx for the function y = etan«

. d
Solution;: —e
dx

tanx

tan x

=e

- sec®x

Example 13: Evaluate f_Olnx(a+1) e ™ dx

Solution:

Example 14: Evaluate [,

Solution: f;n

2
Example 15: Evaluate | xdx

—[80 _ e—(—lnx(a+1))] —

— 8[e3x]})n2 — 8[631n2 —e

=8[2°-1]=64-8=56

2 24

J«O
—Inx(a+1) €

e—3%

_ fo
—Inx(a+1)

In2

24

Inx

—[1-(a+D]=

—dx

0

o] — 8[eln 23

Solution: let u = In X — du = (1/x) dx

Upper Limit=Ine*=2Ine=2

Lower limit=Ine=1

f

du
— = [In|ul]?
u

=ln2-Inl=

In2-0=

In 2

15

e * (—dx) =[—e

dx = 24 folnze3xdx = 2—:flnze3x - 3dx

-x10
]— Inx(a+1)



Example 16: If y = x* e cos 3x, find dy/dx
Solution: y = x* e cos 3x
Iny =In (x* €% cos 3x)
Iny =In (x* €% cos 3x)
Iny =Inx*+ In e + In cos 3x
Iny =3 Inx—-2xIne + In cos 3x

Iny =3 In x—2x + In cos 3x

1 dy _ 1 _ .
S E_B_ 2+—C053x( 3 sin 3x)

Z—i= ()3—6—2—3tan3x).y

= (% — 2 —3tan 3x) x3e72% cos 3x
Example 17: Find the maximum value of f(x) = x? ln%
Solution: y = x? ln% =x%lnx™! =—x%Inx

Z—z = —x? G) +Inx (—2x) = —x — 2xInx = —x(1 + 2Inx)

To find maximum value:
dy/dx=0—->-x(1+2Inx)=0
Xx=0—>x=0
1+2Inx=0—-Inx=-(1/2)
In x -Y% -Y%

€= —>X=¢

For x = 0, the function is not defined [0 * In 1/0 =0 * oo]

16



_ 1
Forx=e¢ %=—

\/E
Atx = ie the function has local maximum value
1 1\2 _1 1 1 1
Atx—\/—z—>y_ _(ﬁ) ‘lne 2 = —;-—Elne =

At the domain of f(x) is x > 0 and at x > ie the function decreasing, then'y = 1/2e
Is absolute maximum value.

7.9 The General Exponential Function a*

Since a = €™ for any positive number a, we can think of a* as (€"™)* = "™ We
therefore make the following definition:

For any numbers a > 0 and x, the exponential function with base a is given by

a‘x — exlna
Laws of exponents:
1. a* + a¥ = a*tY
a* _
2. a—y =q*V
3. a7 % =~
ax
4. (@) = a® = (a¥)*
Derivative of y = a*
y=a
Iny =Ina*
Iny=xlIna
(1/y) (dy/dx) =Ina
(dy/dx) =yIna=a"Ina
d _ o'l du
% =a‘lna -

17



The integral equivalent of this last result is

au
f adu=—+¢C
Ina
7.10 Logarithms with Base a
If a is any positive real number other than 1, the function a* is one-to-one and has a

nonzero derivative at every pont. It therefore has an inverse. Its inverse is called the
logarithm function with base a.

For any positive number a # 1, the logarithm of x with base a, denoted by log, X,
is the inverse function of a*.

The graph of log. x can be obtained by reflecting the graph of y = a* across the 45°
line (Figure 8).

[S*]

Figure 8

When a = e, we have log. x = inverse of €“ = In x. Since log, x and a* are inverses
of one another, composing them in either order gives the identity function.

Properties for a* and log, x:

1.Basea: a'®®*=x, log,a*=x a>0,a+1, x>0

18



2.Basee: e"*=x, Ine*=x x>0

xIn a

3.a"=e

In x

4, |OgaX = na

Rules for base a logarithms
For any numbers x > 0 and y > 0,
1. Product Rule:

log, xy =log, x + log, y
2. Quotient Rule:

X
loga; = log, x —log, y
3. Reciprocal Rule:
1
loga; = —log,y

4. Power Rule:
log, x¥ = ylog, x

7.11 Derivatives and Integrals Involving log, X

d(l )_d(lnu) 1 d | 1 1du
dx - 08 = i\lna lnadx(nu) " Ina udx
d a )= 1du
dx " 08 T g wdx
Example 18:
_ 3
a. —log10(3x +1) = ( +1) = T 10GaD

In 10 3x+1dx
1 Inx

b. flogsz x=—/[—=dx (log2x=12—;c)

In2
1 - —_
=Efudu (u=1Inx, du=(1/x) dx)

1 u? 1 In x)2 In x)2
In2 2 1n2 2 2In2

+C

19



Example 19: Evaluate flﬁ 25" x dx

Solution:

fzxz d _ 1 2x2 \/E
Y I

1 1

C1f22 2t _1[2]_ 1
~2|ln2 In2| 2ln2] In2

Example 20: Find dy/dx for y =

log, x
Solution:

_ d _ _
y = (log; x) 1—>d—z=—(10g2x) 2( ! )— =

xln2) W

20



7.12 Inverse Trigonometric Functions
The inverse trigonometric Functions are used to find the angles from the triangle
sides. They also provide antiderivatives for a wide variety of functions.

The six basic trigonometric functions of a general radian angle x were reviewed.
These functions are not one-to-one (their values repeat periodically).

However, we can restrict their domains to intervals on which they are one-to-one.

1. y =f(x) =sin™x

y =sin X (— oo <X <) is not one-t0-one

The sine function increases from -1 at x = —w/2 to +1 at x = n/2.
By restricting its domain to the interval [- /2, n/2] we make it one-to-one, so that

it has an inverse called sin™x.
y=sin’x (arcsinx) < x=siny
sin (sin x) = x, sin (sin™ x) = x
Note: sin™ x # (sin x)™*

[
C——talE
e

',
*u,
\\'-\.

Domain: — /2 <X <7/2
Range: —1<y<1

2. y=1f(x) =cos™x

-2z

/v = sin!
e

X

X

F

bt f—

T
o

Domain: —1<x<1
Range: —n/2 <y <m/2

¥ cos X

A3

21



Domain: 0 <x<m/2
Range: —1<y<1

3. y=f(x) =tan™ x

Y :
"y 1.31_1 X
JI
I
/o
o
| e
- =1
R [ s
U ] g 3

Domain: — /2 <x<m/2
Range: —wo <y <w

4. y=f(x) = cot™’ x

Domain: 0 <x<m/2
Range: — o<y <w

Domain: —1<x<1
Range: 0 <y <m/2

Domain: —oo <X < oo
Range: — /2 <yx<m/2

y
w
T v = cotlx
H'\.
|
v
T\?
'\._M.
e,
L1 | L
X
-2 -1 | 2

Domain: — o < X < o
Range:0<y<m

22



5.y =f(x) = sec™ x

. S8C X
III
Il|
i ¥
/! '
[ vy I -t
| I - y = sec
0 T 7 — 7
1 ________ —_——— e ——— —
. L -
I, o~
: -'f .r.'r 1
i - | S
Domain: 0 <x<m (X # /2) Domain: x<-1or x>1
Range: —oo<y<-1,1<y<o Range: 0 <y <m (y # n/2)
6. y=f(x) = csc™ x
Y escx
| \ |
| I'. |
| o ¥
BT
: I T __' ¥= csclx
T 0 T 1 S~
~ T i = 7
I 1Y I
| | -
IR b2
Domain: — /2 <x<m/2 (x #0) Domain: x<-1or x>1
Range: —o<y<-1,1<y<ow Range: —n/2<y<a/2 (y#0)

These restricted functions are now one-to-one, they have inverses, which we denote
by:
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y =sin™ x ory = arcsin x
y =cost x ory =arccos x
y=tan" x ory = arctan x
y =cot® x ory = arccot x
y =sec™ X Ory = arcsec x
y =CSC X Ory = arccsc x

¥

73 ¥ - -
ey =1 Arc whose sine is x

= —

™,
%, Arc whose
A

/Angle whose Y cosine isx

/ sine is x| 'I

| .,
0 i

\ x
\ Angle whose |

. . f
\ msmuyﬁ
_:-"'d-.

Example 21: Evaluate (a) sin™?! (g) and (b) cos™? (— ;)

Solution:
(B«
Sin 2 = 3

(a) we see that
. T V3 )
Because sinz = (7) and n/3 belongs to the range [-m/2, m/2] of the arcsine
function. See Figure 9

(b) We have cos™?! (— %) _z2r
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Because cos (2n/3) = - 2 and 2n/3 belongs to the range [0, ©t] of the arccosine
function. See Figure 10.

N

S
l'.'l]hli‘a'-".: = —j

Figure 10

Example 21: If § = sin™?! Vz—g find sin 0, sec 9, cot 0

Solution: sin@ = g [Sin 6 = Sin(sin_l g)]

9_1

cosS =3
_1_
secH—T—Z

2

to !
cotld = —
V3

Identities Involving Arcsine and Arccosine
(1) As we can see from Figure 11, the arccosine of x satisfies the identity

cos' x + cos™t (-x) =7

v
_ h
cos l{—x)

\\\\ / cos 1y
Vo
f W | AN Y
| W, | T |
| : 1
-1 —x 0 x |l

N4
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Figure 11
(2) Also, we can see from the triangle in Figure 12 that for x > 0,
sint x + cos™ x =n/2
tan™ x + cot™ x = /2

sectx+csctx=m2

Figure 12

(3)sec™ x = cos™ (1/x)
csct x = sin™ (1/x)
cot™ x = tan™ (1/x)

7.13 Derivatives of Inverse Trigonometric Functions

1. The derivative of y = sin™ x

y =sin® x — sin y = sin (sin™ x) — sin y = x

X=siny —1=cosydy/dx — dy/dx=1/cosy

siny + cos’y=1— cos’y =1 —sin’y — cosy = +,/1 — siny
but sin’y =x*> — cosy = +V1 — x2

dy _ 1 d =1 _ 1
dx  V1-x2 or dx (Sln X) T V1-x2
.o d dy du
Ify=sinmu, =~ ===
dx du dx
d 1 du
—SIin u= .
dx V1 —u2 dx

26



Derivatives of the inverse trigonometric functions

d(sin"!u) 1  du
= —, |u] <1
dx V1 —y2dx
d(cos™tu) -1 du
dx V1 —y2dx
dttan™"u) 1 du
dx 1+ u?dx
d(cot™tu) -1 du
dx 1+ u?dx
d(sec™tu) 1 du
= —, |u] >1
dx lulVuz — 1dx
d(csctu -1  du
( ) = lul >1

dx |u|\/u2 — 1%'

Example 22: Find dy/dx for the function y = x sin™*v/x + Vx — 1

ion' % = () - 157 + sin~? 1ix— 1)-1/2
Solutlon.dx—x(m) ~X 2+ sin \/E(l)+2(x 1)

X 1
=————+sin IV + ——
2+/xV1 — x 2Vx — 1

Example 23: If y = tan™! =, find dy/dx

; 1-x _ d 1 du
Solution: letu = — — y = tan 1, Y = L au
1+x dx 14u? dx
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gz__ 1 A+x)(-1)-(1-x)(1) _ —1-x—1+x

T 1+(%2 2 T (A4+02+(1-x)?
ax 1+ (1+2) (——4%;;;;r£—0(1+x)2

dy —2(1 + x)? -2

dr [A+202+(1-x)]1+202 [1+202+ (1 —x2)]

7.14 Integrals of the inverse trigonometric functions

du _
f =sin"tu+C

V1 —u?

f —du “ly+C
=cos 'u
V1 —u?
du )

_f1+u2 =tan" " u+C

—du 1
j 1T 12 =cot™u+C

du j d(—u) L

— = =sec tu| + C = cos™? —|+C

quuZ -1 (—u)Vu? -1 u

j —du j —d(—u) I, .11
—= =cscHu =sin™" |-
uvu? — 1 (—u)vu?z -1 u

|+

dx
V9—x2

Solution: V9 — x?% = /9(1 - x—:) =3 fl - (§)2

Letu=x/3 >du=1/3dx — dx =3 du

Example 24: Evaluate [
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f 3du B du

X
i1 — win—1 (2
3\/1_u2—\/1_u2—sm u+ C = sin ()+C

3

. 2 _ 19 _ — y?2 =_ =
Example 25: Solve xvx 1dx—,/1 y4,y=—"whenx=2,

Solution: xvVx? —1dy = /1 —y dx—’fx = f\/ld_Lyz

ec’ x| +C =sin"ly — cos™?! El +C=sin"ly
— - -1 (1 a1 1

Atx=2,y=-% — cos (E)+C—sm (—5)

1/3+C=-1m/6 >C=—n/6 —n/3=—n/2

-1

4 1] =«
sin™* y = cos —

xl 2

V2/2 xdx

Example 26: Evaluate [ —

Solution: let u = x> — du = 2x dx — x dx = du/2

1

\/_
UL=()?=2=- LL=(0)=0

1/2 1/2
du 1 du 1 1/2
[ i Lt
2V1 —uz 2 ) V1-u? 2

=% [sint Y% -sin 0] = % [1/6 — 0] = /12

ln\/_ eXdx

e2x

Example 27: Evaluate [,

Solution:

Let u =e* — du = e* dx

29



1+e*=1+ () =1+’

UL =e™V3 =43 LL=¢"=1

du

T [tan"tu]Y® = [tan"1 V3 — tan™1 1]

H\)a

=n/3 —n/4=7/12
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CHAPTER 8

TECHNIQUES OF INTEGRATION

The Fundamental Theorem tells us how to evaluate a definite integral once we have
an antiderivative for the integrand function. Table 8.1 summarizes the forms of
antiderivatives for many of the functions we have studied so far, and the
substitution method helps us use the table to evaluate more complicated functions
involving these basic ones.

In this chapter we study a number of other important techniques for finding
antiderivatives (or indefinite integrals) for many combinations of functions whose
antiderivatives cannot be found using the methods presented before.

TABLE 8.1 Basic integration formulas

1. /I.‘ & =kx+C (any number k) 12. [Ian xdx = In |secx| + C
' .Ty.'+| .
2, ]r“r.".\' =317 C (n#—1) 13. *[cot.ra‘x = In |sinx| + C
" dx
3 F =In|x| +C 14. secxdy = In|secx + tanx| + C
4. /e""c.".t’ ="+ C 15. [CSL‘I dx = —In|cscx + cotx| + C
. .
5. /ax dx = ]j:_a + C (a=0,a#1) 16. [sinh_r dx = coshx + C
6. / sinxdx = —cosx + C 17. /coshxdx = sinhx + C
7. j cosxdr = sinx + C 18. [ dx — = sin”! (%) +C
J Va* - ¥t
8. ] sec’ xdx = tanx + C 19. [HE ‘f: - = %tan'] ((_’;) +c
9. csc’xdx = —cotx + C g |
/ cotx 20, [ cjr = = 7 s5ec : % +C
JoavVaxt —at
0. xtanxdx = secx + C af
1 j secxtanxdy = secx + C I1. [ ?’x _ — inh ! (%) +C (a = 0)
J o NVa® +xt
11. cscxcotydy = —csex + C
,/ ) - 22, [ :h — = cosh! (i—ﬁ) +C (x =a=0)
J o Vxt—a®




8.1 basic Integration Methods

1. Substitution Method

Example 1: Evaluate [ V1 + x? - x>dx
Solution:

f\/1+x2-x5dx=f\/1+x2-x4-xdx

letu=1+X*—>du=2xdx—dx=du/?

X¥=u—1—x"=0)*=(Uu-1)>

f\/ﬂ-(u—l)z-dz—u=%fu%-(u2—2u+1)du

N[
N[ U1

L - ok byt Lt bk By e
=3 (u u u)u—2[7u U 3u]

1 2 5 1 3
=7(1+x2)7/2 —§(1+x2)2 +§(1+x2)2 +C

2. Completing the Square

To write the function (ax® + bx + ¢) in the form (a u® + k)
a. Factor out a from first two terms — a (x2 + gx) +c
b. Add and subtract the square of half coefficient of x

Gy -2

2_I_b +b2 b? N
a\x ax 4a?2 4q? ¢

2

. -b
c. Bring out the el

2_I_b +b2 b? N
a\x ax 4q2 @ 4q? ¢



2+b +b2 + b%) - (+b)2+ b7 - “+k
N T T s “T4a) T\ F T2 “T4q) M

b b2

where: u=x+— k=c——
2a 4a

dx

x24+2x+2

Example 2: Evaluate [
Solution:

2
ax2+2x+2:au2+k;u=x+%,k=(c—b—)

4q
b\* b2

a<x+%> +<C—E>

a=1b=2c=2

+b—(+ 2)— +1
¥t = toxg) =@+

(C_£>:<2_42><21>=<2_§)=1

j dx _j dx
x242x+2 ) (x+1)2+1

du

Letu=x+1—>du=dx—>fu2+1

=tanlu+c=tant(x+1)+¢c

3. Expanding a Power and using Trigonometric Identity

Example 3: Evaluate [(secx + tanx)*dx

Solution:

= j(secz x + 2 secxtanx + tan? x)dx
= j(secz x + 2 secxtanx + (sec? x — 1))dx

= j(Zsec2x+ 2 secxtanx — 1)dx = 2tanx + 2secx —x + ¢



4. Reducing an improper fraction
Improper fraction is the fraction with degree of numerator equals or greater than the
degree of denominator. The long division is used to integrate this fraction.

. dx

Example 4: Evaluate f—%_ﬁ

Solution: let x = u® — dx = 6 u® — 3/x = (ub)Y/3 = u?
Vx = (u6)1/2 — 3

6u°du usdu W .
fuz — 3 6 f (1 —u) = 6J -4 [improper fraction|
—uddu B j‘ uddu
-(1-u)

1
=—6f(u2+u+1+—>du
u—1

=6

u—1

1 1
=—6[§u3+§u2+u+ln|u—1|]+c

1 1
= —6|5VE+ 5 ¥F+ E+{E - 1|+

5. Separating a Fraction

x343
x

Example 5: Evaluate | dx

Solution:

x3+3 3
j dx=J<x+—)dx
X X

1
= Exz +31In|x| + ¢

6. Sequences of Substitutions

Example 6: Evaluate f\/l + sin?(x — 1) - sin(x — 1).cos(x — 1)dx
Solution:
Letu=sin (x—1) — du=cos (x — 1) dx

j\/1+u2-u ~du



Letv=1+u?>—>dv=2udu— udu=dv2

f\/— j dv=%<§)v3/2+c

= §v3/2 +c ——(1 +u?)3?2 +c==[1+sin?(x—D]*?+c

UJID—\

8.2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

j FG)g(0dx

It is useful when f can be differentiated repeatedly and g can be integrated
repeatedly without difficulty.

= = d A
If u=1(x) andv—g(x)ea(uv) =u—+v

dx
In general d (uv) =udv+vdu
udv=d(uv)-vdu—ludv=d@v)-[vdu

judvzuv— Jvdu

Formula for integrating by parts

Note:
1. (u) is chosen in which can b differentiated repeatedly to become zero, or
chosen in which can be appear repeatedly after differentiation.
2. (dv) is chosen in which can be integrated repeatedly without difficulty.

Example 7: Find

jxcosx dx
Solution:
We use the formula [udv=uv— [vdu

u=x, dv = cos x dx,
du = dx, V = Sin X,



Then

fxcosx dx=xsinx—fsinxdx=xsinx+cosx+C

Example 8: Find

J Inx dx
Solution:

Since [ Inx dx can be written as [ Inx - 1 dx, we use the formula fudv =uv —
[vdu

u = In x (simplifies when differentiated) dv=dx (easy to integrate)
du = (1/x) dx v =X (simplest integration)

Then [udv=uv— [vduwill be:

1
flnxdx=x1nx—fx ;dx=xlnx—jdx=xlnx—x+€

sze" dx

Example 9: Evaluate

Solution: fudv=uv— [vdu
u=x? dv=e"dx,
du=2xdxandv=¢"

then :

szexdx=x2ex—2jxexdx

We need to repeat the integration by parts for the right term ([ x e* dx) with:
u=x, dv = e*dx,

du=dx andv=¢"

then:

Jxexdxzxex—fexdx=xex—ex+6

Using this last evaluation, we then obtain:



fxzexdx=x2ex—2]xexdx

= x%e* —2xe* +2e* 4+ C

Example 10: Evaluate
f e* cosx dx

Solution:
Letu =¢e* and dv = cos x dx
Then du =e*dx, v =sin X,

fexcosxdxzexsinx—fexsinxdx

The second integral is like the first except that it has sin x in place of cos x. To
evaluate it, we use integration by parts with
u=¢e" dv=sinxdx, du=e"dx, v=-cosx,

fexcosx dx = e*sinx — (—ex COS X —j (—cosx)(e* dx))
=exsinx+excosx—Jexcosxdx

The unknown integral now appears on both sides of the equation. Adding the
integral to both sides and adding the constant of integration give:

2]excosx dx =e*sinx +e*cosx + C1

Dividing by 2 and renaming the constant of integration give

. e*sinx + e*cosx
e*cosxdx = >




8.3 Tabular Integration
This integration is used when the integration by parts required many repititions

Example 11: Evaluate

| x* e*dx
Solution:
With f(x) = x* and g(x) = €*, we list:
f(x) and its derivatives g(x) and its integrals

X e*
2X e
2 e
0 e

We combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

[xetdx=x2e*—2xe*+2e +¢

Example 12: Evaluate

J 3 sin x dx
Solution:
With f(x) = x* and g(x) = sin x, we list:

f(x) and its derivatives g(x) and its integrals
X sin x
3x° — COS X
6X —sin x
6 COS X
0 sin X

[x3sinxdx=—x3cos x+ 3x?sin X + 6X COS X — 6 Sin X + ¢



8.4 Trigonometric Integrals
Trigonometric integrals involve algebraic combinations of the six basic
trigonometric functions. In principle, we can always express such integrals in terms
of sines and cosines, but it is often simpler to work with other functions, as in the
integral

[sec’ xdx=tanx + ¢

The general idea is to use identities to transform the integrals we have to find into
integrals that are easier to work with.

8.4.1 Products of Powers of Sines and Cosines
We begin with integrals of the form:

[ sin™ x cos” x dx,
where m and n are nonnegative integers (positive or zero)

Case 1: mis odd
Save one sine factor and use sin? x = 1 — cos® x. Then substitute u = cos x

Example 13: Evaluate
| sin® x cos? x dx

Solution:
[ sin®x . cos? x dx = | sin x . sin* x . cos? x dx

= | 'sin x . (1 - cos® x)* . cos” x dx
Letu=cosXx — du=-sinxdx —sinxdx=-du

=— ] -u??% udu=—[ (1 -2u*+u?. v*du
=—J?=2u*+u®)du=—[R) ud—(2/B) v+ (LT)u'] +c

= — (1/3) cos® x — (2/5) cos®x — (1/7) cos’ x + ¢

9



Case 2: nis odd
Save one cosine factor and use (cos” x = 1 — sin® x). Then substitute u = sin x

Example 14: Evaluate
J cos® x dx

Solution:
[ cos®xdx =] cosx.cos*xdx=]cosx (1 sin®x)*dx

Let u =sin x — du = cos x dx

J-uv)du=-J(-2u*+u")du=u—(2/3) u*+ (I/5) v’ + ¢
=sin x — (2/3) sin®x + (1/5) sin® x + ¢

Case 3: m and n are even

. 1—cos2x
Use: sin’x =

1+cos2x
2

cos®x =

Example 15: Evaluate | sin’x cos® x dx

2
i i 1-cos2 1+cos?2
Solution: | sin”* x cos” x dx = ( C‘Z’S x) : ( CZS x) d

=1/8 ] (1 —c0s 2x) . (1 + 2 cos 2x + cos® 2x). dx
=1/8 ] (1 + cos 2x — cos” 2x — cos® 2x). dx
Now: [ cos® 2x dx = (1/2) [ (1 + cos 4x) dx = (%2) [x + (1/4) sin 4x]
J cos® 2x dx = [ (1 —sin? 2x) cos 2x dx
Let u = sin 2x — du = 2 cos 2x dx — cos 2x dx = du/2
=(1/2)[ (1 - u®) du =% [u — (1/3) u®] = ¥ [sin 2x — (1/3) sin® 2x]

| sin® x cos* x dx = (1/8) [ x + (1/2) sin 2x — (1/2) (x + (1/4) sin 4x) — (1/2) (sin 2x —
(1/3) sin®2x] + ¢

10



= (1/8) [ x + (1/2) sin 2x — (1/2) x — (1/8) sin 4x — (1/2) sin 2x + (1/6) sin®2x] + ¢
= (1/16) [ x — (1/4) sin 4x + (1/3) sin® 2x + ¢

Note: if both m and n are odd, use either Case 1 or Case 2.

8.4.2 Products of Sines and Cosines
The integrals
Jsin mx sin nx dx, Jsin mx cos nx dx, and [cos mx sin nx dx
arise in many applications involving periodic functions. We can evaluate these
integrals through integration by parts, but two such integrations are required in each
case. It is simpler to use the identities
sin mx sin nx = %2 [cos (m —n) x — cos (m + n) x],

sin mx cos nx = % [sin (m —n) x + sin (m + n) X],

COS MX €0S nNX =% [cos (M —n) X + cos (m + n) x],

Example 16: Evaluate | sin 2x sin x dx
Solutionnm=2,n=1
| sin 2x sin x dx = | ¥4 [cos x — cos 3x] dx
=1 Jcos x dx— ¥ [ cos 3x dx = Y4 sin x — 1/6 sin 3x + ¢
Example 17: Evaluate | sin 3x cos 5x dx
Solution:
m=3,n=5

| sin 3x cos 5x dx = % [ [sin (3 — 5) x + sin (3 + 5) x] dx
= 1 | [sin (=2x) + sin (8x)] dx

11



=1 [ [sin 8x —sin 2x] dx  (sin (- X) = - sin X)
=Y [(- 1/8) cos 8 x + (1/2) cos 2x] + C
=Y cos 2x — (1/16) cos 8x + C

8.4.3 Integrals of Powers of tan x and sec x

Case 1: Odd Power of Secant
Use integration by parts and the identity (tan® x = sec® x — 1)

Example 18: Evaluate
[ sec® x dx
Solution:
[ sec® x dx = [ sec x sec? x dx
Let u =sec x — du =sec X tan x dx
dv = sec’ X dx — v = tan x
[ sec® x dx = sec x tan x — [ tan x .sec x .tan x dx
= sec X tan x — | tan” x .sec x dx
= sec x tan X — | (sec® x — 1) .sec x dx
= sec x tan x — J (sec® x — sec x) dx
= sec x tan x — | sec® x dx + Jsec x dx

2[ sec® x dx = sec x tan x+ In | sec x tan x |
['sec® x dx =% [sec x tan x+ In |sec x tanx | ]+ C
Case 2: Even Power of Secant
Save sec? x and use (sec® x = tan® x + 1)
Example 19: Evaluate

[ sec” x dx
Solution:

| sec* x dx = [ sec” x. sec® x dx = | (tan® x+ 1) . sec® x dx

= [ [tan? x . sec® x + sec® x] dx = (1/3) tan® x + tan x + C

12



Case 3: Odd and Even Power of Tangent

Save tan® x and use (tan? x = sec? x — 1)

Example 20: Evaluate
[ tan® 3x dx
Solution:
J tan® 3x dx = [ tan? 3x. tan® 3x dx = [ (sec? 3x — 1) tan® 3x dx
= [ tan® 3x sec® 3x dx — J tan® 3x dx
= (1/3) ] (tan 3x)* . 3 sec? 3x dx — J tan® 3x dx
= (1/3) ] (tan 3x)* . 3 sec? 3x dx — J tan® 3x dx
= (1/3) (tan” 3x)/4 — [ (sec? 3x — 1) tan 3x dx
(1/12) tan* 3x — [ tan 3x sec? 3x dx — [ tan 3x dx
(1/12) tan* 3x — (1/3) [ tan 3x. 3 sec? 3x dx — | tan 3x dx
(1/12) tan® 3x — (1/3) (tan® 3x)/2 — (1/3) In |sec 3x|+C
= (1/12) tan* 3x — (1/6) (tan® 3x) — (1/3) In | sec 3x|+C

8.4.4 Power Products of tangent and secant
[ sec™x . tan" x . dx ,m, n are positive

Case 1: mis even
Save sec? x and use (sec® x = tan® x + 1), then substitute u = tan x.

Example 21: Evaluate
[ sec* x . tan x dx
Solution:

[ sec* x . tan x dx = [ sec® x . sec® x . tan x dx
= [ (tan® x + 1) . sec® x . tan x dx
Let u =tan x — du = sec? x dx
J(uW*+1).udu=J(ud¥+u)du=Q/4)u*+ 12 u*+C
= (1/4) tan* x + (1/2) tan’ x+ C

13



Case 2: mand n is odd
Save sec x tan x and use (tan x = sec? x — 1) for remaining factor, then substitute u
= Sec X.

Example 22: Evaluate
[ sec® x . tan® x dx
Solution:

['sec®x . tan® x dx = | (sec x tan x) . sec” x . tan® x dx
= [ (sec x tan x) . sec® x . (sec? x — 1) dx
Let u =sec x — du = sec x tan x dx
Jur. (=) du=J@W'-uv)du= @B uv-1/R3)u*+C
= (1/5) sec® x — (1/3) sec* x + C
Case 3: mis odd and n is even

Use (tan® x = sec” x — 1)

Example 23: Evaluate
[ sec x . tan® x dx

[ sec x . tan® x dx = [ sec x . (sec” x — 1) dx =[ (sec® x — sec x) dx
| sec® x dx = % [sec x tan x+ In | sec X tan X | ] [ from last example]

| sec x . tan? x dx =¥2 [sec x tan x+ In |secxtanX|]—1n |secxtanX|+C

8.5 Trigonometric Substitutions

Trigonometric substitutions occur when we replace the variable of integration by a
trigonometric function. The most common substitutions are x = a tan 4, x = a sin 6
and x = a sec 6. These substitutions are effective in transforming integrals

involvingva? + x2, Va2 — x2 and Vx2 — a2 into integrals we can evaluate directly
since they come from the reference right triangles in Figure 1.

14



X Vol —at
\ 6 \ 0 \6
| | |
a Val - x? &
x=atanf x=agasinf x=asech
Va®+ x> =alsec] Va®—x?=alcosh V! — g’ = altan 6|
With x = a tan 6,

a?+x=a’+a’tan’f=a’ (1 +tan’ ) = a* sec’ 0

With x = a sin 6,

a’—x=a’—a’sin?0=a’(1—sin*60) = a* cos’ O
With x = a sec 6,

x*—a’= a’sec’0—a’=a’(sec’0—1) =a’tan’ 0
Fora®—u® use u=asingd, —n2<0<n/?2
Fora®+u® use u=atanf, —a2<0<n/?2
For u’—a® use u=aseco, 0<0<m OFmn/2

Example 24: Evaluate
j dx
V1 — 4x2
Solution:
1-4x*=a’-u’,a=1,u=2x
Useu=asind—2x=1sin0,

O=sint2x —x2<0<n?
2dx=cos 0df — dx =" cos 0 d@

1
5c0s0df 1 rcosfdo 1JCOSQ de
+ cos @

dx
.[\/1—4x2_ Vi—sin20 2J Veos?g 2

15



Butcos @is +ve for—n/2 <0 <n/2

1 fcosbdd 1 d9—19 C—l"12 c
f—,/1_4xz_§f cos 6 _E_]- T2 * -2 xF

Example 24: Evaluate

[7+1
25 + 16y2

25+16y*=a’+u’, a=5,u=4y
Useu=atan § — 4y = 5tan 6

0=tan" 4y/5 —2/2<0<n/2

4y="5tan O — 4 dy = 5 sec’ 0 d0 — dy = (5/4) sec* 0 do

Solution:

5
j‘ dy f zsec?0 do B Sf sec?6 dé
25+ 16y2 ) 25+ 25tan?8 4 ) 25 sec?6

=(1/20) | d6 = (1/20) 6 + C = (1/20) tan™* (4y/5) + C

Example 25: Evaluate
(2x + 3)dx

4x%2 + 4x +5

Solution:
Ax*+4x+5=ax’+bx+c=au’+k ,a=4,b=4,c=5
u=x+b/2a=x+u/2*u
Uu=x+1%
k=c—(b2/4a)=5—(42/4*4)=5—1=4
4%°+4x+5=4 (X +%)* +4 =4 [(x + 1) +1]

(2x + 3)dx (2x+3)dx (2x+3)dx

4x2 +4x+5
4[(x +7) +1] +2) +1
(x+%)P+1=u’+a’,u=x+%,a=1

Useu=atan0 — X +% =1tan 0 — dx = sec’ 0 do

16



X+%=tand— O =tan" 2x +1)2 —n/2<0<n/2

2x=2tan6-1

1f (2x + 3)dx _1J‘(2tan9—1+3)sec29d9
4 1\, 4

(x+7) 41 tan?6 + 1

1 (2tan9+2)se029d9_1J2t 9+1d6—1ft 6d6+1jd9
4 sec26 =3 ) 2(@nd+1)do =7 | tan 2

=% In |sec€|+‘/z(9+C

Vax?+4x+5 1 2x+1
> +§tan ( > >+C

_11
_En

8.6 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials)
as a sum of simpler fractions, called partial fractions, which are easily integrated.
For instance, the rational function (5x — 3)/(x* — 2x — 3) can be rewritten as:

5x-3 _ 2 3
x2—2x—3 x+1 x-3

The method for rewriting rational functions as a sum of simpler fractions is called
the method of partial fractions. In the case of the preceding example, it consists
of finding constants A and B such that

5x — 3 B A N B
x2—2x—3 x+1 x-3

Case 1: Distinct Linear Factors of g (x):

f&x) A B N C N
g(x) a;x+b;, ayx+b, azx+b;

17



Example 26: Evaluate

(6x + 1)dx
x24+4x—5
Solution:
(6x+1)  (6x+1) A B A(x+5)+B(x-1)

x2+4x—5_(x—1)(x+5):(x—1)+(x+5)_ (x —1)(x +5)
Multiplying both sides with (x — 1) (x + 5)
6x+1=AKX+5+B(Xx-1)—>6x+1=Ax+5A+Bx-B
6x+1=(A+B)x+ (5A—B)

A+B=6,5A-B=1
A=6-B—5(6-B)-B=1—-30-5B-B=1—6B=29—B=29/6

A =6 — (29/6) = 7/6

(6x +1)d U 2) 7 d 29 d
X X z = X X
—jxéldx+ 6 f —

x2+4+4x—5 x+5dx=8 x—1+6 x+5

= (7/6)In |x—1]|+@29/6)In [x-1]|+C

Example 27: Evaluate

dx

fo3—4x2—15x+5
x2—2x—8

Solution:
Use long division:

2x3 —4x%> —15x + 5 x+5
x2—2x—8 N x2—2x—8

18



x+5 x+5
x2—2x—8 (x+2)(x —4)

x+5 _ A N B
(x+2)(x—4) x+2 x—4

Multiplying both sides by (x + 2) (x — 4)
X+5=A(XX-4)+B(x+2)
X+5=Ax—4A +Bx + 2B
X+5=(A+B)x-4A+ 2B

A+B=1 (x-2)—>-2A-2B=-2

_4A+2B=5
—2A-2B=-2
By adding:
-6A=3
A=—1% B=1—(-%)=3/2
1 3
12x3—4x2—15x+5d _f e 2 . 2 |
x?—-2x—8 *= T2 x—4|Y

=x*—YIn [x+2|+@32)In |x+2| +k

Case 2: Repeated Linear Factors of g (x):

fx) A B c
gx) ax+b + (ax + b)2 * (ax + b)3 e

19



Example 28: Evaluate
J x dx
x4+ 2x+1
Solution:

X X X A B

P2l GFrDEFD G+ @ D x+1)?
X=A(X+1)+B—-x=Ax+(A+B)

A=1,A+B=0—-A=-B—-B=-A=-1

= In|x + 1|

j‘ x dx f 1dx 1dx (x+ 1)1

2+2x+1 Jx+1 ) (x+1)2 1

1
=lnjlx+1| ——+C
x+1

Example 29: Evaluate

dx

J5x2+20x+6
x3+2x24+x

Solution:

5x*+20x+6 5x*+20x+6 5x*+20x+6
x3+2x2+x  x(x2+2x+1) x(x+1)2

5x2+20x+6 A . B c

x (x+1)2  x  x+1  (x+1)2

(both case 1 and case 2)

Multiply both sides with x (x + 1)*:
5x*+20x+ 6 =A (x + 1)*+ Bx (x +1) + Cx

5x°+20x+6=A(+2x+ 1) + BX* + Bx + Cx

20
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5x°+ 20X+ 6 = AX* +2A x + A + Bx? + Bx + Cx
5x°+20x+6=(A+B)x*+ (2A +B + C) x +A

A=6,A+B=5—-B=-1L2A+B+C=20—-C=9
f5x2+20x+6d _J[6 1 N 9 ]d
Br2xitx O ) Ix x4t (x +1)2 x

9
6In|x| —In|x+1|+——+k
x+1

Case 3: Distinct Irreducible Quadratic Factors of g (x):

f(x) Ax + B Cx+D Ex+F
= + +
gx) a;x?+bx+c; ax®?+byx+c, azx?+byx+cy

Example 30: Evaluate

f (x% + 1)(x — 1)2
Solution:

x—3 _ Ax+B C D
(x2+1)(x—1)2_(xz+1)+(x—1)+(x—1)2

Multiply both sides with (x* + 1) (x — 1)?
X—3=AXx+B(x—1)>+C (x—1) (*+1) + D (x* +1)

Xx—3=Ax+B (x*—2x+1)+ C x— C (x*+1) + D (x* +1)
X—3=AX - 2A¢ +AX+BX*-2BXx+B+Cx*+Cx—-C+Dx*+D

Xx—3=(A+C)x*+ (-2A+B-C+D)x¥*+ (A-2B+ C)x + (B—C +D)
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2A+B-C+D=0........ (2)

A-2B+C=1 ... (3)

B-C+D=-3....... 4)

EQu.2&4: —>-2A+(-3)=0—>-2A=0-(-3) >-24=3—>A4=-3I2
FromEqul:C=-A=3/2
FromEqu.3:A-2B+C=1——-3/2)-2B+3/2)=1—>2B=-1—>B=-"%

FromEqu.3:-%-(3/2) +D=-3 — (-4/2)+D=-3—>D=-3+2=-1

-3 1 3
G-dx _(Fx-g)dx [ gdx dx
(x2+1D(x-1)2 (x2+1) +J(x—1)_J(x—1)2

_3j' x dx 1j dx +3de j dx
2) (x2+1) 2)x2+1 2)x-1 (x —1)2

= 31|2+1| 1t -1 +31| 1| +
= 4‘l’l)C 2(:11’1 X 2nx

1
G e

Case 4: Repeated Irreducible Quadratic Factors of g (x):

f(x)  Ax+B N Cx+D N Ex+F N
g(x) ax?+bx+c (ax?2+bx+c)?  (ax?+ bx +c)3
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Example 31: Evaluate

J

Solution:

1—x+2x%—x3

1—x+4+2x%2—x3 1—x+2x%—x3

dx

x>+ 2x3 +x

1—x+2x%—x3

x° 4+ 2x3 +x

1—x+2x2—x3_A Bx +C

ox(xt+2x2+1) -

Dx+FE

x(x? 4+ 1)? _;+x2+1

Multiply both sides with x (x* + 1)

* (x%2 +1)2

x(x? 4+ 1)?

1-x+2¢-X=AX+1)*+Bx+C)(X)(X*+1)+(Dx+E) (X

1-x+2¢-xX=A X' +2x* + 1) + (BX* + C x) (X* + 1) + DX* + Ex

1-X+2C - =A*+20¢% + A+ Bx* +B x>+ C x> + C x + Dx* + Ex

1-x+2¢-x*=(A+B) x* +C x®* +(2A + B +D) x¥*+ (C+ E) x + A

A=1,A+B=0—-B=-1 C=-1

2A+B+D=2—-D=1

C+E=-1->E=0

jl—x+2x2—x3d —f[1+
B+2d+x ) |

1 X

1

:,[[;_x2+1_x2+1+(x2+1)2

_ 1 2 -1
—lnlxl—zlnlx + 1| —tan™" x —

(—x—1) N X
x2+1  (x*2+1)?
X
]dx
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8.7 The Substitution Z =tan (x/2)

The substitution z = tan (x/2) reduces the problem of integrating any rational
function of sin x and cos x to a problem involving a rational function of z

z =tan (x/2), cos® 0 = % (1 + cos 0), cos® (x/2) = Y2 (1 + cos X)

2 cos® (x/2) =1 + cos x — cos x = 2 cos” (x/2) — 1

2 1 2 2 2—2z%2—-1
cosx = —-1= —1= =
2 2
1 — 72
COS X =
z2+1

sin 20 = 2 sin 6 cos #, sin x = 2 sin (x/2) cos (x/2)

Zsin%
sinx = X
cos»
2x_zt X 1
cos > = anz.sec2£
2
=2t X ! =2 -
- anz.tong+1_ “7+1
B 2z
2 +1

dz 2dz

Z=tan(x/2)—>dz=’/zsecz(x/Z)dx—>dx=:eC—2£—>dx=m
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_ 2dz
T2 4+1

dx

Example 32: Evaluate

j‘ dx
1 —sinx
Solution:
zdz zdz
f dx :f z2+1 :J z2+1 _
1—sinx 1— 2z z2+1-2z
z2+1 z2 +1

—zf LA,
B (z—12 z-1

25

2

tan (%) -1

_zj dz
z2—-2z+1
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