Lab instruments ...Lecture-4

The Spectrophotometer-2

جامعة المعقل الكلية التقنية الصحية قسم تقنيات التحليلات المرضية

Out line:

- Introduction to Spectrophotometry
- Principles of Spectrophotometer
- Instruments of Measurement
- Instrumentation (Spectrophotometers)
- Definitions & Symbols
- Beer Lambert law
- Applications of a spectrophotometer

Introduction to Spectrophotometry

- Properties of Light:
- Electromagnetic radiation moves in waves
- Light (called electromagnetic radiation) moves in waves.
- Wavelength = different types of light have different wavelengths. Some are longer than others. For instance, in the visible light spectrum, red light waves are longer than blue light waves.
- Wavelengths are commonly given in ????

Electromagnetic spectrum

Colors & Wavelengths

Only those substances appear coloured that absorb VIS radiation The colour is then determined by the reflected light (the colour of the substance is *complementary* to that one which has been absorbed):

Visible Light

Color absorbed	Color observed	Absorbed radiation(nm)
Violet	Yellow-green	400-435
Blue	Yellow	435-480
Green-blue	Orange	480-490
Blue-green	Red	490-500
Green	Purple	500-560
Yellow-green	Violet	560-580
Yellow	Blue	580-595
Orange	Green-blue	595-605
Red	Blue-green	605-750

What are Spectroscopy and Spectrophotometry??

- Light can either be transmitted or absorbed by dissolved substances.
- Presence & concentration of dissolved substances is analyzed by passing light through the sample.
- Spectroscopes measure electromagnetic emission
- Spectrophotometers measure electromagnetic absorption

Principles of Spectrophotometer

- A spectrophotometer consists of two instruments:
- Spectrometer: for producing light of any selected color (wavelength),
- Photometer: for measuring the intensity of light.

Instruments of Measurement

• What do spectrophotometers measure?

- The absorption of light indicates the presence of the substance. This is a qualitative measurement.

 The amount of light absorbed measures the concentration of the dissolved substance. This is a quantitative measurement.

Absorption of Light

White light

- All colors
- Polychromatic light
- -When white (polychromatic) light passes through a coloured solution some of the light is absorbed by the substances in the solution, and the rest passes through.
- -For Example: Green solution absorbs light other than green.

Absorption of Light

- Monochromatic light
 - · Light of one color
- For example: If white light is made to pass through a red filter, all light except red is filtered out and absorbed.
 Therefore, only red light hits the solution.

The Spectrophotometer

The Spectrophotometer

• a) Single-beam

• b) Double-beam

Instrumentation (Spectrophotometers)

- 1- Sources of light
- 2- Wavelength Selectors
- 3- Sample Containers
- 4- Detectors
- 5- signal processor and readout

The Spectrophotometer

1-Source of Light

- UV light from 200 to below 380 nm = deuterium or hydrogen lamp.
- Visible region from 380 nm to 780 nm = tungsten or tungsten-halogen.

2- Wavelength Selectors

- To limit light to a certain wavelength
- Monochromator (prism or gratting) can isolate a specific wavelength of white light and allow it to pass through the solution being analyzed.

3- Sample Containers

- Cell or cuvettes:
- Visible range = glass cuvette and plastic cuvette
- UV range = quartz cuvette

4- Detectors

Detector: Convert radiant energy (photons) into an electrical signal.

Photocell: To detect transmitted light,

Or Photomultiplier tube: very sensitive detector

5- signal processor and readout

Out put:

- The final instrument component, the output transducer, converts the modified electrical signal into information in a form useful to the analyst.
- Meter
- Digital
- · Chart paper; or recorder
- Computerizes system

Absorption of radiation

- Molecules of the sample absorb the photons of a suitable wavelength (
 λ) and change their energy level (state):
 - 1) in the microwave and far infrared region, the photons have such a low energy that, if absorbed, can cause only the changes of the rotational energy states
 - 2) absorption of photons of the infrared radiation can bring about the changes of the vibrational energy states
 - 3) energy of photons of UV and visible light (VIS) is sufficient to cause the transition of electron to a higher electronic energy level

Energy levels of a molecule

Definitions & Symbols:

- Radiation Intensity (I)
- I_t: is the radiation transmitted by the solution.
- I_0 : is the radiation transmitted by the pure solvent (blank).
- Transmittance (T)
 - It's also referred to as %T or T x 100

$$^{\circ} \%T = I_t \times 100$$

21

Definitions & Symbols:

- ABSORBANCE (A)
- A = log(1/T) = -log(T)
- $A = log I_o = log I_o log I_t$ I_t
- Absorbance is what is generally recorded from a spectrophotometer.

Beer - Lambert law

More dissolved substance = more absorption and less transmittance. Beer-Lambert's Law is:

$$A = \varepsilon b C$$

$$\operatorname{Log}\left[\frac{\mathbf{I}_{0}}{\mathbf{I}_{t}}\right] = \varepsilon b C$$

A= Absorbance (no units)

 ε = molar extinction coefficient, molar absorptivity

c =concentration of the absorbing species (mol/L)

b = path length of the light-absorbing sample (cm)

Sample Problem

 Cytosine has a molar extinction coefficient of 6 x 10³ mol⁻¹ L cm⁻¹ at 270 nm at pH 7. Calculate absorbance of 1 x 10⁻³ M cytosine solution in 1mm cell at 270 nm.

• Solution:
•
$$\mathbf{A} = \text{Log} \begin{bmatrix} \mathbf{I}_{o} \\ \mathbf{I}_{t} \end{bmatrix} = \varepsilon b C$$

- $\varepsilon = 6 \times 10^3 \text{ mol}^{-1} \text{ L.cm}^{-1}$
- b = 1 mm = 0.1 cm
- $C = 1 \times 10^{-3} M$

•
$$\mathbf{A} = \boldsymbol{\varepsilon} \, \boldsymbol{b} \, \mathbf{c} = (6 \times 10^3) \times (0.1) \times (1 \times 10^{-3})$$

= 6×10^{-1}
= 0.6

Applications of Spectrophotometry

Chemical analysis
Food safety analysis
Blood analysis
DNA/RNA Conc. analysis
Residual Pesticide analysis
Residual chlorine analysis

The important characteristics of Spectrophotometric methods

- 1. Wide applicability to both organic and inorganic systems
- 2. High sensitivity of 10⁻⁶-10⁻⁴ M
- 3. Moderate to high selectivity.
- 4. Good accuracy the relative error encountered in concentration lie in the range from 1% to 3%
- 5. Ease and convenience of data acquisition

Home work

Q1.// Which one is more sensitive? Explain why?
 Photo tube or photomultiplier tube as detector.

 Q2.//Why can't we use glass or plastic cell in UV spectroscopy with wave length from 200-400nm?

Resources and references:

- Textbook: Principles of instrumental analysis, Skoog et al., 5th edition, chapter 7, 13.
- Quantitative chemical analysis, Daniel C. Harris, 6th edition, chapter 20.
- Lecture slides partially adopted from Dr. Raafat Aly slides.
- Useful links
- http://www.youtube.com/watch?v=pxC6F7bK8CU&feature=player_detailpage
- http://bio-animations.blogspot.com/2008/04/double-beam-uvvisspectrophotometer.html