Introduction of Spectrophotometry

Out line :

- Introduction to Spectrophotometry
- Principles of Spectrophotometer
- Instruments of Measurement
- Instrumentation (Spectrophotometers)
- Definitions & Symbols
- Beer Lambert law
- Applications of a spectrophotometer

Introduction to Spectrophotometry

• Properties of Light:

- *Electromagnetic radiation* moves in waves
- Light (called electromagnetic radiation) moves in waves.
- Wavelength = different types of light have different wavelengths. Some are longer than others. For instance, in the visible light spectrum, red light waves are longer than blue light waves.
- Wavelengths are commonly given in ????

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electromagnetic spectrum

Colors & Wavelengths

Only those substances appear coloured that absorb VIS radiation The colour is then determined by the reflected light (the colour of the substance is *complementary* **to that one which has been absorbed):**

Visible Light

Color absorbed	Color observed	Absorbed radiation(nm)
Violet	Yellow-green	400-435
Blue	Yellow	435-480
Green-blue	Orange	480-490
Blue-green	Red	490-500
Green	Purple	500-560
Yellow-green	Violet	560-580
Yellow	Blue	580-595
Orange	Green-blue	595-605
Red	Blue-green	605-750

What are Spectroscopy and Spectrophotometry??

- Light can either be *transmitted* or *absorbed* by dissolved substances.
- Presence & concentration of dissolved substances is analyzed by passing light through the sample.

- Spectroscopes measure electromagnetic *emission*
 - Spectrophotometers measure electromagnetic

absorption

Principles of Spectrophotometer

• A spectrophotometer consists of two instruments:

- **Spectrometer:** for producing light of any selected color (wavelength),
- **Photometer:** for measuring the intensity of light.

Instruments of Measurement

- What do spectrophotometers measure?
- The absorption of light indicates **the presence of the substance**. This is a qualitative measurement.
- The amount of light absorbed measures the **concentration of the dissolved substance.** This is a quantitative measurement.

Absorption of Light

X

•White light

- All colors
- Polychromatic light o

-When white (polychromatic) light passes through a coloured solution some of the light is absorbed by the substances in the solution, and the rest passes through.
-For Example: Green solution absorbs light other than green.

Absorption of Light

- Monochromatic light
- Light of one color
- For example: If white light is made to pass through a red filter, all light except red is filtered out and absorbed.
 Therefore, only red light hits the solution.

Red light is absorbed by the green solution

The Spectrophotometer

• a) Single-beam

• b) Double-beam

Instrumentation (Spectrophotometers)

1- Sources of light 2- Wavelength Selectors 3-Sample Containers 4- Detectors 5- signal processor and readout

The Spectrophotometer

1-Source of Light

- UV light from 200 to below 380 nm = deuterium or hydrogen lamp.
- Visible region from 380 nm to 780 nm = tungsten or tungsten-halogen.

2- Wavelength Selectors

• To limit light to a certain wavelength

• Monochromator (prism or gratting) can isolate a specific wavelength of white light and allow it to pass through the solution being analyzed.

- **3- Sample Containers**
- Cell or cuvettes:
- Visible range = glass cuvette and plastic cuvette
- UV range = quartz cuvette

4- Detectors

Detector: Convert radiant energy (photons) into an electrical signal.

• Photocell: To detect transmitted light,

• Or Photomultiplier tube: very sensitive detector

5- signal processor and readout

Out put:

The final instrument component, the output transducer, converts the modified electrical signal into information in a form
 useful to the analyst.

- Meter
- Digital

• Chart paper; or recorder

Computerizes system

Absorption of

radiation

- Molecules of the sample absorb the photons of a suitable wavelength (
- λ) and change their energy level (state):

- 1) in the microwave and far infrared region, the photons have such a low energy that, if absorbed, can cause only the changes of the rotational energy states
- 2) absorption of photons of the infrared radiation can bring about the changes of the vibrational energy states
- 3) energy of photons of UV and visible light (VIS) is sufficient to cause the transition of electron to a higher electronic energy level

Energy levels of a molecule

Definitions & Symbols:

- Radiation Intensity (I)
- I_t : is the radiation transmitted by the solution.
- I_0 : is the radiation transmitted by the pure solvent (blank).
 - Transmittance (T)
 - It's also referred to as %T or T x 100

• $\frac{\%}{I_0}T = I_t \ge 100$ • I_0 Definitions & Symbols:

- ABSORBANCE (A)
- A = log(1/T) = -log(T)
- $A = log I_o = log I_o log I_t$

It

• Absorbance is what is generally recorded from a spectrophotometer.

Beer - Lambert law

More dissolved substance = more absorption and less transmittance.

Beer-Lambert's Law is: $A = \Box b C$ $\begin{bmatrix} Log & I_0 \\ I_t \end{bmatrix} = \Box b C$

A= Absorbance (no units)

 $\Box = \text{molar extinction coefficient, molar absorptivity}$ c = concentration of the absorbing species (mol/L) b= path length of the light-absorbing sample (cm)

Sample Problem

- Cytosine has a molar extinction coefficient of 6 x 10³ mol⁻¹ L cm⁻¹ at 270 nm at pH 7. Calculate absorbance of 1 x 10⁻³ M cytosine solution in 1mm cell at 270 nm.
 Solution: A = Log I₀ = □b C
- $\Box = 6 \times 10^3 \, \text{mol}^{-1} \, \text{L.cm}^{-1}$
- b = 1 mm = 0.1 cm
- $C = 1 \times 10^{-3} M$
 - **A** = \Box **b c** = (6 x 10³)x (0.1) x (1 x 10⁻³)

 $= 6 \times 10^{-1}$ = 0.6

Applications of Spectrophotometry

Chemical analysis Food safety analysis Blood analysis DNA/RNA Conc. analysis Residual Pesticide analysis Residual chlorine analysis

The important characteristics of Spectrophotometric methods

. Wide applicability to both organic and inorganic systems

2. High sensitivity of 10⁻⁶-10⁻⁴ M

3. Moderate to high selectivity.

- 4. Good accuracy the relative error encountered in concentration lie in the range from 1% to 3%
- 5. Ease and convenience of data acquisition

Home work

- <u>**Q1.**</u>// Which one is more sensitive? Explain why? Photo tube or photomultiplier tube as detector.
- Q2.//Why can't we use glass or plastic cell in UV spectroscopy with wave length from 200-400nm?

Resources and references:

- > Textbook: Principles of instrumental analysis, Skoog et al., 5th edition, chapter 7, 13.
- > Quantitative chemical analysis, Daniel C. Harris, 6th edition, chapter 20.
- Lecture slides partially adopted from Dr. Raafat Aly slides.
- Useful links
- <u>http://www.youtube.com/watch?v=pxC6F7bK8CU&feature=player_detailpage</u>
- http://bio-animations.blogspot.com/2008/04/double-beamuvvisspectrophotometer.html

